Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 90, Number 3, Pages 354–368 (Mi tmf5547)  

This article is cited in 215 scientific papers (total in 216 papers)

Fractional integral and its physical interpretation

R. R. Nigmatullin

Kazan State University
References:
Abstract: A relationship is established between Cantor's fractal set (Cantor's bars) and a fractional integral. The fractal dimension of the Cantor set is equal to the fractional exponent of the integral. It follows from analysis of the results that equations in fractional derivatives describe the evolution of physical systems with loss, the fractional exponent of the derivative being a measure of the fraction of the states of the system that are preserved during evolution time $t$. Such systems can be classified as systems with “residual” memory, and they occupy an intermediate position between systems with complete memory, on the one hand, and Markov systems, on the other. The use of such equations to describe transport and relaxation processes is discussed. Some generalizations that extend the domain of applicability of the fractional derivative concept are obtained.
Received: 31.01.1991
English version:
Theoretical and Mathematical Physics, 1992, Volume 90, Issue 3, Pages 242–251
DOI: https://doi.org/10.1007/BF01036529
Bibliographic databases:
Language: Russian
Citation: R. R. Nigmatullin, “Fractional integral and its physical interpretation”, TMF, 90:3 (1992), 354–368; Theoret. and Math. Phys., 90:3 (1992), 242–251
Citation in format AMSBIB
\Bibitem{Nig92}
\by R.~R.~Nigmatullin
\paper Fractional integral and its physical interpretation
\jour TMF
\yr 1992
\vol 90
\issue 3
\pages 354--368
\mathnet{http://mi.mathnet.ru/tmf5547}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1182302}
\zmath{https://zbmath.org/?q=an:0795.26007}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 90
\issue 3
\pages 242--251
\crossref{https://doi.org/10.1007/BF01036529}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KF10700002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5547
  • https://www.mathnet.ru/eng/tmf/v90/i3/p354
  • This publication is cited in the following 216 articles:
    1. N. S. Arkashov, V. A. Seleznev, “Heterogeneity effect in the statistical analysis of plasma density”, Theoret. and Math. Phys., 222:3 (2025), 483–496  mathnet  crossref  crossref
    2. Maryam Mohseni, Davood Rostamy, “Analyzing the stability of coupled nonlinear fractional Volterra–Fredholm integro-differential equations with a modern method for numerical solutions”, Bound Value Probl, 2025:1 (2025)  crossref
    3. T. S. Kumykov, PROCEEDINGS OF THE 2ND INTERNATIONAL INTERDISCIPLINARY SCIENTIFIC CONFERENCE “DIGITALIZATION AND SUSTAINABILITY FOR DEVELOPMENT MANAGEMENT: ECONOMIC, SOCIAL, AND ENVIRONMENTAL ASPECTS”, 3033, PROCEEDINGS OF THE 2ND INTERNATIONAL INTERDISCIPLINARY SCIENTIFIC CONFERENCE “DIGITALIZATION AND SUSTAINABILITY FOR DEVELOPMENT MANAGEMENT: ECONOMIC, SOCIAL, AND ENVIRONMENTAL ASPECTS”, 2024, 060014  crossref
    4. Murat Beshtokov, D. Nazarov, A. Juraeva, “Approximate solution of non-local boundary value problems for a loaded hyperbolic equation with two fractional differentiation operators”, E3S Web Conf., 474 (2024), 02023  crossref
    5. Gilberto Espinosa-Paredes, Carlos-Antonio Cruz-López, “A new compartmental fractional neutron point kinetic equations with different fractional orders”, Nuclear Engineering and Design, 423 (2024), 113184  crossref
    6. N. S. Arkashov, V. A. Seleznev, “On the Probabilistic-Statistical Approach to the Analysis of Nonlocality Parameters of Plasma Density”, Comput. Math. and Math. Phys., 64:3 (2024), 441  crossref
    7. XIAO-JUN YANG, DUMITRU BALEANU, J. A. TENREIRO MACHADO, CARLO CATTANI, “PREFACE — SPECIAL ISSUE ON FRACTALS AND LOCAL FRACTIONAL CALCULUS: RECENT ADVANCES AND FUTURE CHALLENGES”, Fractals, 32:04 (2024)  crossref
    8. Ruhua Zhang, Wei Xiao, “What is the variant of fractal dimension under addition of functions with same dimension and related discussions”, MATH, 9:7 (2024), 19261  crossref
    9. N. S. Arkashov, “On limit theorems for partial sum processes of moving averages constructed on the basis of heterogeneous processes”, Siberian Adv. Math., 34:3 (2024), 175–186  mathnet  crossref  crossref
    10. Helen Wilson, Sarthok Sircar, Priyanka Shukla, Fluid Mechanics and Its Applications, 138, Viscoelastic Subdiffusive Flows, 2024, 125  crossref
    11. R. I. Parovik, “Kachestvennyi analiz drobnoi dinamicheskoi sistemy Selkova s peremennoi pamyatyu s pomoschyu modifitsirovannogo algoritma Test 0-1”, Vestnik KRAUNTs. Fiz.-mat. nauki, 45:4 (2023), 9–23  mathnet  crossref
    12. Moroz L, Maslovskaya A., 2023 Days on Diffraction (DD), 2023, 150  crossref
    13. Li Li, Fajun Yu, “Some space-time fractional bright–dark solitons and propagation manipulations for a fractional Gross–Pitaevskii equation with an external potential”, Commun. Theor. Phys., 75:7 (2023), 075010  crossref
    14. Megha Pandey, Tanmoy Som, Saurabh Verma, Springer Proceedings in Mathematics & Statistics, 419, Applied Analysis, Optimization and Soft Computing, 2023, 93  crossref
    15. Murat Beshtokov, Lecture Notes in Networks and Systems, 702, Current Problems in Applied Mathematics and Computer Science and Systems, 2023, 106  crossref
    16. Vasily E. Tarasov, “General Fractional Calculus in Multi-Dimensional Space: Riesz Form”, Mathematics, 11:7 (2023), 1651  crossref
    17. Marco Antonio Taneco‐Hernández, José Francisco Gómez‐Aguilar, Bricio Cuahutenango‐Barro, “Wave process in viscoelastic media using fractional derivatives with nonsingular kernels”, Math Methods in App Sciences, 46:4 (2023), 4413  crossref
    18. N. S. Arkashov, V. A. Seleznev, “On heterogeneous diffusion processes and the formation of spatial–temporal nonlocality”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:7 (2023)  crossref
    19. Chengcai Cai, Yongjun Shen, Shaofang Wen, “Simultaneously primary and super-harmonic resonance of a van der Pol oscillator with fractional-order derivative”, Chaos, Solitons & Fractals, 176 (2023), 114102  crossref
    20. Geylani Panahov, Parviz Museibli, Babek Sultanov, “Effect of soil consolidation on the fractality of the filtration law”, International Journal of Applied Mechanics and Engineering, 28:1 (2023), 84  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:2912
    Full-text PDF :1065
    References:114
    First page:6
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025