Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 90, Number 3, Pages 323–353 (Mi tmf5546)  

This article is cited in 85 scientific papers (total in 86 papers)

Distribution of some functionals of the integral of a random walk

Ya. G. Sinai

Landau Institute for Theoretical Physics, USSR Academy of Sciences
References:
Abstract: The asymptotic behavior of the probabilities associated with the first crossing of a straight line or parabola by the integral of a Brownian curve is studied.
Received: 22.08.1991
English version:
Theoretical and Mathematical Physics, 1992, Volume 90, Issue 3, Pages 219–241
DOI: https://doi.org/10.1007/BF01036528
Bibliographic databases:
Language: Russian
Citation: Ya. G. Sinai, “Distribution of some functionals of the integral of a random walk”, TMF, 90:3 (1992), 323–353; Theoret. and Math. Phys., 90:3 (1992), 219–241
Citation in format AMSBIB
\Bibitem{Sin92}
\by Ya.~G.~Sinai
\paper Distribution of some functionals of the integral of a~random walk
\jour TMF
\yr 1992
\vol 90
\issue 3
\pages 323--353
\mathnet{http://mi.mathnet.ru/tmf5546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1182301}
\zmath{https://zbmath.org/?q=an:0810.60063}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 90
\issue 3
\pages 219--241
\crossref{https://doi.org/10.1007/BF01036528}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KF10700001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5546
  • https://www.mathnet.ru/eng/tmf/v90/i3/p323
  • This publication is cited in the following 86 articles:
    1. Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, Alex Scott, “Counting graphic sequences via integrated random walks”, Trans. Amer. Math. Soc., 2025  crossref
    2. Omar Malik, Melinda Varga, Alaa Moussawi, David Hunt, Boleslaw K. Szymanski, Zoltan Toroczkai, Gyorgy Korniss, “Diffusive persistence on disordered lattices and random networks”, Phys. Rev. E, 109:2 (2024)  crossref
    3. Hanshuang Chen, Lulu Tian, Guofeng Li, “Short-time large deviation of constrained random acceleration process”, Phys. Rev. E, 110:6 (2024)  crossref
    4. Michael Bär, Jetlir Duraj, Vitali Wachtel, “Invariance principles for integrated random walks conditioned to stay positive”, Ann. Appl. Probab., 33:1 (2023)  crossref
    5. Przemysław Pogorzelec, Bartłomiej Dybiec, “Stochastic kinetics under combined action of two noise sources”, Phys. Rev. E, 107:4 (2023)  crossref
    6. Ion Santra, Durgesh Ajgaonkar, Urna Basu, “The dichotomous acceleration process in one dimension: position fluctuations”, J. Stat. Mech., 2023:8 (2023), 083201  crossref
    7. Theory Probab. Appl., 67:1 (2022), 77–88  mathnet  crossref  crossref  mathscinet  zmath
    8. Frank Aurzada, Martin Kilian, Ercan Sönmez, “Persistence probabilities of mixed FBM and other mixed processes”, J. Phys. A: Math. Theor., 55:30 (2022), 305003  crossref
    9. Claude Godrèche, Jean-Marc Luck, “Record Statistics of Integrated Random Walks and the Random Acceleration Process”, J Stat Phys, 186:1 (2022)  crossref
    10. Random Motions in Markov and Semi‐Markov Random Environments 2, 2021, 177  crossref
    11. Random Motions in Markov and Semi‐Markov Random Environments 1, 2021, 205  crossref
    12. David S. Dean, Satya N. Majumdar, Hendrik Schawe, “Position distribution in a generalized run-and-tumble process”, Phys. Rev. E, 103:1 (2021)  crossref
    13. Prashant Singh, “Random acceleration process under stochastic resetting”, J. Phys. A: Math. Theor., 53:40 (2020), 405005  crossref
    14. Markus Nyberg, Ludvig Lizana, “Persistence of non-Markovian Gaussian stationary processes in discrete time”, Phys. Rev. E, 97:4 (2018)  crossref
    15. Theodore W. Burkhardt, “Occupation Time of a Randomly Accelerated Particle on the Positive Half Axis: Results for the First Five Moments”, J Stat Phys, 169:4 (2017), 730  crossref
    16. Hermann Joël Ouandji Boutcheng, Thomas Bouetou Bouetou, Theodore W Burkhardt, Alberto Rosso, Andrea Zoia, Kofane Timoleon Crepin, “Occupation time statistics of the random acceleration model”, J. Stat. Mech., 2016:5 (2016), 053213  crossref
    17. Arturo L. Zamorategui, Vivien Lecomte, Alejandro B. Kolton, “Distribution of zeros in the rough geometry of fluctuating interfaces”, Phys. Rev. E, 93:4 (2016)  crossref
    18. Stefan Adams, Alexander Kister, Hendrik Weber, “Sample path large deviations for Laplacian models in $(1+1)$-dimensions”, Electron. J. Probab., 21:none (2016)  crossref
    19. Alexis Devulder, “Persistence of some additive functionals of Sinai's walk”, Ann. Inst. H. Poincaré Probab. Statist., 52:3 (2016)  crossref
    20. Sergey Knysh, “Zero-temperature quantum annealing bottlenecks in the spin-glass phase”, Nat Commun, 7:1 (2016)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:840
    Full-text PDF :312
    References:137
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025