Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 129, Number 3, Pages 373–386
DOI: https://doi.org/10.4213/tmf543
(Mi tmf543)
 

This article is cited in 1 scientific paper (total in 1 paper)

Integrable Systems on Phase Spaces with a Nonflat Metric

E. I. Bogdanov

Elabuga State Pedagogical Institute
Full-text PDF (220 kB) Citations (1)
References:
Abstract: We study the integrability problem for evolution systems on phase spaces with a nonflat metric. We show that if the phase space is a sphere, the Hamiltonian systems are generated by the action of the Hamiltonian operators on the variations of the phase-space geodesics and the integrability problem for the evolution systems reduces to the integrability problem for the equations of motion for the frames on the phase space. We relate the bi-Hamiltonian representation of the evolution systems to the differential-geometric properties of the phase space.
Received: 06.12.2000
Revised: 11.05.2001
English version:
Theoretical and Mathematical Physics, 2001, Volume 129, Issue 3, Pages 1618–1630
DOI: https://doi.org/10.1023/A:1013044915875
Bibliographic databases:
Language: Russian
Citation: E. I. Bogdanov, “Integrable Systems on Phase Spaces with a Nonflat Metric”, TMF, 129:3 (2001), 373–386; Theoret. and Math. Phys., 129:3 (2001), 1618–1630
Citation in format AMSBIB
\Bibitem{Bog01}
\by E.~I.~Bogdanov
\paper Integrable Systems on Phase Spaces with a Nonflat Metric
\jour TMF
\yr 2001
\vol 129
\issue 3
\pages 373--386
\mathnet{http://mi.mathnet.ru/tmf543}
\crossref{https://doi.org/10.4213/tmf543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1905064}
\zmath{https://zbmath.org/?q=an:1029.37034}
\elib{https://elibrary.ru/item.asp?id=13374285}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 3
\pages 1618--1630
\crossref{https://doi.org/10.1023/A:1013044915875}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173128700001}
Linking options:
  • https://www.mathnet.ru/eng/tmf543
  • https://doi.org/10.4213/tmf543
  • https://www.mathnet.ru/eng/tmf/v129/i3/p373
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :193
    References:39
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024