Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 82, Number 1, Pages 143–154 (Mi tmf5402)  

This article is cited in 5 scientific papers (total in 5 papers)

Mean-field models in the theory of random media. II

L. V. Bogachev, S. A. Molchanov
Full-text PDF (909 kB) Citations (5)
References:
Abstract: A study is made of a stationary random medium described by the evolution equation ψ/t=ϰ¯ΔV+ξ(x)ψ where ¯ΔV is the operator of mean-field diffusion in the volume VZd, ξ(x),xV, are independent random variables with normal distribution N(0,σ2). A study is made of the asymptotic behavior of the solution ψ(x,t) and its statistical moments mp(x,t)=ψp(x,t), p=1,2,, as t, |V|. The paper continues the earlier [1].
Received: 03.10.1988
English version:
Theoretical and Mathematical Physics, 1990, Volume 82, Issue 1, Pages 99–107
DOI: https://doi.org/10.1007/BF01028258
Bibliographic databases:
Language: Russian
Citation: L. V. Bogachev, S. A. Molchanov, “Mean-field models in the theory of random media. II”, TMF, 82:1 (1990), 143–154; Theoret. and Math. Phys., 82:1 (1990), 99–107
Citation in format AMSBIB
\Bibitem{BogMol90}
\by L.~V.~Bogachev, S.~A.~Molchanov
\paper Mean-field models in~the theory of~random media.~II
\jour TMF
\yr 1990
\vol 82
\issue 1
\pages 143--154
\mathnet{http://mi.mathnet.ru/tmf5402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1050305}
\zmath{https://zbmath.org/?q=an:0702.60098}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 82
\issue 1
\pages 99--107
\crossref{https://doi.org/10.1007/BF01028258}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990DY17800015}
Linking options:
  • https://www.mathnet.ru/eng/tmf5402
  • https://www.mathnet.ru/eng/tmf/v82/i1/p143
    Cycle of papers
    This publication is cited in the following 5 articles:
    1. Arvydas Astrauskas, “Asymptotic Results for Spacings of Largest Order Statistics”, Sankhya A, 2024  crossref
    2. Arvydas Astrauskas, “Some Bounds for the Expectations of Functions on Order Statistics and Their Applications”, J Theor Probab, 36:2 (2023), 1116  crossref
    3. V. I. Alkhimov, “Evolution in a Gaussian Random Field”, Theoret. and Math. Phys., 139:3 (2004), 878–893  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. L. V. Bogachev, S. A. Molchanov, “Mean-field models in the theory of random media. III”, Theoret. and Math. Phys., 87:2 (1991), 512–526  mathnet  crossref  mathscinet  zmath  isi
    5. Klaus Fleischmann, Stanislav Alekseevich Molchanov, “Exact asymptotics in a mean field model with random potential”, Probab. Th. Rel. Fields, 86:2 (1990), 239  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :153
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025