Abstract:
Problem of large-scale turbulent dynamo in gyrotropic liquid is considered in the
framework of quantum field-theoretical formulation of stochastic magnetic hydrodynamics [1]. It is shown that the gyrotropness (breaking of parity conservation) leads
to instability which stabilizes itself by means of spontaneous arising of non-vanishing
average of homogeneous magnetic field. The existence in the dynamo regime of specific
long-living perturbations of the Alfven waves is predicted. Renormalization group
and critical dimensions of all quantities considered are discussed.
Citation:
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, “Turbulent dynamo as spontaneous symmetry breaking”, TMF, 72:3 (1987), 369–383; Theoret. and Math. Phys., 72:3 (1987), 940–950
This publication is cited in the following 29 articles:
Michal Hnatič, T. Lučivjanský, L. Mižišin, Iu. Molotkov, A. Ovsiannikov, Springer Proceedings in Complexity, 16th Chaotic Modeling and Simulation International Conference, 2024, 203
Yann Carteret, Dominik Schleicher, Jennifer Schober, “Small-scale dynamo with finite correlation times”, Phys. Rev. E, 107:6 (2023)
I Abushzada, E Yushkov, P Frick, D Sokoloff, “Small-scale Kazantsev-Kraichnan dynamo in a MHD shell approach”, Phys. Scr., 98:11 (2023), 115966
Krzysztof A. Mizerski, “Renormalization group analysis of the magnetohydrodynamic turbulence and dynamo”, J. Fluid Mech., 926 (2021)
Hnatic M. Honkonen J. Lucivjansky T., “Symmetry Breaking in Stochastic Dynamics and Turbulence”, Symmetry-Basel, 11:10 (2019), 1193
Michal Hnatič, Georgii Kalagov, Tomáš Lučivjanský, Peter Zalom, Springer Proceedings in Complexity, 11th Chaotic Modeling and Simulation International Conference, 2019, 95
A. S. Il'yn, V. A. Sirota, K. P. Zybin, “Small-scale turbulent magnetic field: Growth vs. decay”, EPL, 121:3 (2018), 34002
Jurcisinova E. Jurcisin M. Menkyna M., “Simultaneous Influence of Helicity and Compressibility on Anomalous Scaling of the Magnetic Field in the Kazantsev-Kraichnan Model”, Phys. Rev. E, 95:5 (2017), 053210
Hnatic M. Zalom P., Phys. Rev. E, 94:5 (2016), 053113
Antonov N.V. Gulitskiy N.M., “Logarithmic violation of scaling in anisotropic kinematic dynamo model”, XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM (Saint Petersburg, Russia, 8?12 September 2014), AIP Conference Proceedings, 1701, ed. Andrianov A. Brambilla N. Kim V. Kolevatov S., Amer Inst Physics, 2016, 100006
Antonov N.V. Kostenko M.M., “Anomalous Scaling in Magnetohydrodynamic Turbulence: Effects of Anisotropy and Compressibility in the Kinematic Approximation”, Phys. Rev. E, 92:5 (2015), 053013
N. V. Antonov, N. M. Gulitskiy, “Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field”, Phys. Rev. E, 91:1 (2015)
Jurcisinova E. Jurcisin M. Remecky R. Zalom P., “Turbulent Magnetic Prandtl Number in Helical Kinematic Magnetohydrodynamic Turbulence: Two-Loop Renormalization Group Result”, Phys. Rev. E, 87:4 (2013), 043010
B. A. Shakhov, M. Jurcisin, E. Jurcisinova, M. Stehlik, “The spontaneous magnetic field direction in an anisotropic MHD dynamo”, Kinemat. Phys. Celest. Bodies, 28:5 (2012), 225
Abhik Basu, Jayanta K. Bhattacharjee, “Fluctuating hydrodynamics and turbulence in a rotating fluid: Universal properties”, Phys. Rev. E, 85:2 (2012)
N. V. Antonov, N. M. Gulitskiy, “Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model”, Phys. Rev. E, 85:6 (2012)
Chang-Bae Kim, “Large-scale plasma flows destabilized by symmetric noise”, Journal of Turbulence, 11 (2010), N19
Chang-Bae Kim, “Generation of plasma flow in noise-driven Hasegawa–Mima model”, Nucl. Fusion, 50:4 (2010), 045001
E. Jurčišinová, M. Jurčišin, R. Remecký, “Influence of helicity on the Kolmogorov regime in fully developed turbulence”, Phys. Rev. E, 79:4 (2009)
C-B Kim, “Stabilization of large-scale fluctuations in noise-driven plasmas by magnetic field”, Plasma Phys. Control. Fusion, 50:2 (2008), 025005