Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1989, Volume 80, Number 3, Pages 340–352 (Mi tmf5246)  

This article is cited in 8 scientific papers (total in 8 papers)

Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. II. Use of Poincaré-invariant formulation of the principle of least action

I. Yu. Krivsky, V. M. Simulik
References:
Abstract: The Noether analysis of conservation laws for the electromagnetic field is carried out basing on the Lagrange function in terms of field strengths $\mathbf{E,H}$ which is scalar with respect to the total Poincare group $\tilde {\mathrm P}(1,3)$. It is shown that the $\tilde {\mathrm P}$-scalar Lagrange function differs from the other Lagrange functions discussed before in such a way that it is exactly conservation law for the energy momentum $P_\mu$ of the electromagnetic field which this function puts into correspondence with the generators $\partial_\mu$ of space-time translations according to the Noether theorem; moreover, this function makes it possible to establish an adequate connection between the zilch conservation laws and symmetries of the Maxwell equations and also to introduce the minimal and local $\tilde {\mathrm P}$-scalar interaction of the electromagnetic field $\mathbf{(E, H)}$ and spinor field. Analysis of the Noether correspondence between symmetry operators and conservation laws, together with other criteria, makes it possible to single out a suitable Lagrange function for the tensor electromagnetic field $F=\mathbf{(E, H)}$ in the set of $s$-equivalent Lagrangians.
Received: 17.12.1987
English version:
Theoretical and Mathematical Physics, 1989, Volume 80, Issue 3, Pages 912–921
DOI: https://doi.org/10.1007/BF01016183
Bibliographic databases:
Language: Russian
Citation: I. Yu. Krivsky, V. M. Simulik, “Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. II. Use of Poincaré-invariant formulation of the principle of least action”, TMF, 80:3 (1989), 340–352; Theoret. and Math. Phys., 80:3 (1989), 912–921
Citation in format AMSBIB
\Bibitem{KriSim89}
\by I.~Yu.~Krivsky, V.~M.~Simulik
\paper Noether analysis of~zilch conservation laws and their generalization for the electromagnetic field.
II.~Use of~Poincar\'e-invariant formulation of~the principle of~least action
\jour TMF
\yr 1989
\vol 80
\issue 3
\pages 340--352
\mathnet{http://mi.mathnet.ru/tmf5246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1026914}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 3
\pages 912--921
\crossref{https://doi.org/10.1007/BF01016183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CY79100002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5246
  • https://www.mathnet.ru/eng/tmf/v80/i3/p340
  • This publication is cited in the following 8 articles:
    1. Vasileios A. Letsios, “Conservation of all Lipkin's zilches from symmetries of the standard electromagnetic action and a hidden algebra”, Lett Math Phys, 113:4 (2023)  crossref
    2. Igor Proskurin, Robert L. Stamps, Topics in Applied Physics, 138, Chirality, Magnetism and Magnetoelectricity, 2021, 207  crossref
    3. Igor Proskurin, Alexander S Ovchinnikov, Pavel Nosov, Jun-ichiro Kishine, “Optical chirality in gyrotropic media: symmetry approach”, New J. Phys., 19:6 (2017), 063021  crossref
    4. T. G. Philbin, “Lipkin's conservation law, Noether's theorem, and the relation to optical helicity”, Phys. Rev. A, 87:4 (2013)  crossref
    5. Robert P Cameron, Stephen M Barnett, “Electric–magnetic symmetry and Noether's theorem”, New J. Phys., 14:12 (2012), 123019  crossref
    6. Georgi Georgiev, Iskren Georgiev, “The Least Action and the Metric of an Organized System”, Open Syst. Inf. Dyn., 09:04 (2002), 371  crossref
    7. I. Yu. Krivsky, V. M. Simulik, “Dirac equation and spin 1 representations, a connection with symmetries of the Maxwell equations”, Theoret. and Math. Phys., 90:3 (1992), 265–276  mathnet  crossref  mathscinet  isi
    8. V. M. Simulik, “Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws”, Theoret. and Math. Phys., 87:1 (1991), 386–393  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :144
    References:58
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025