Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 69, Number 2, Pages 245–258 (Mi tmf5223)  

This article is cited in 4 scientific papers (total in 4 papers)

Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator

A. I. Pilyavskii, A. L. Rebenko
References:
Abstract: In a medium with permittivity εε there is a spherical insulator Ω0Ω0 of radius R0R0 with permittivity ε0<εε0<ε. A system of ions represented by charged impermeable spheres of radius r0r0 whose distribution around the sphere Ω0Ω0 satisfies the Brydges–Federbush neutrality condition is considered. Initially, the system is in a finite volume ΛΛ (sphere of radius RR0RR0), and the interaction satisfies a Dirichlet condition on ΛΛ. For sufficiently high values of the temperature convergence of the cluster expansions and existence of the distribution functions in the limit RR (ΛR3) are proved. It is established that there is exponential clustering of the distribution functions along the radial directions of the sphere Ω0 with a power-law decrease along the surface Ω0.
Received: 16.01.1985
Revised: 25.05.1986
English version:
Theoretical and Mathematical Physics, 1986, Volume 69, Issue 2, Pages 1127–1136
DOI: https://doi.org/10.1007/BF01037872
Bibliographic databases:
Language: Russian
Citation: A. I. Pilyavskii, A. L. Rebenko, “Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator”, TMF, 69:2 (1986), 245–258; Theoret. and Math. Phys., 69:2 (1986), 1127–1136
Citation in format AMSBIB
\Bibitem{PilReb86}
\by A.~I.~Pilyavskii, A.~L.~Rebenko
\paper Debye screening in spatially inhomogeneous systems of charged particles. I.~Model of spherical insulator
\jour TMF
\yr 1986
\vol 69
\issue 2
\pages 245--258
\mathnet{http://mi.mathnet.ru/tmf5223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=884495}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 69
\issue 2
\pages 1127--1136
\crossref{https://doi.org/10.1007/BF01037872}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986J382700009}
Linking options:
  • https://www.mathnet.ru/eng/tmf5223
  • https://www.mathnet.ru/eng/tmf/v69/i2/p245
  • This publication is cited in the following 4 articles:
    1. O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024  crossref
    2. Alexei L. Rebenko, “Poisson measure representation and cluster expansion in classical statistical mechanics”, Commun.Math. Phys., 151:2 (1993), 427  crossref
    3. A. I. Pilyavskii, A. L. Rebenko, V. I. Skripnik, “Generalized solutions of the Bogolyubov diffusion hierarchy in the thermodynamic limit. Cluster expansions”, Theoret. and Math. Phys., 93:1 (1992), 1160–1172  mathnet  crossref  mathscinet  isi
    4. A. L. Rebenko, “Mathematical foundations of equilibrium classical statistical mechanics of charged particles”, Russian Math. Surveys, 43:3 (1988), 65–116  mathnet  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :125
    References:47
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025