Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 76, Number 2, Pages 207–218 (Mi tmf5054)  

This article is cited in 47 scientific papers (total in 47 papers)

Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions

K. G. Chetyrkin
References:
Abstract: In the framework of the operator expansions developed in [1–3], it is shown in an arbitrary model that the coefficient functions of the operator expansion (renormalized in the minimal subtraction scheme) are finite, and explicit formulas convenient for calculating them in practice are obtained.
Received: 22.01.1987
English version:
Theoretical and Mathematical Physics, 1988, Volume 76, Issue 2, Pages 809–817
DOI: https://doi.org/10.1007/BF01028580
Bibliographic databases:
Language: Russian
Citation: K. G. Chetyrkin, “Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions”, TMF, 76:2 (1988), 207–218; Theoret. and Math. Phys., 76:2 (1988), 809–817
Citation in format AMSBIB
\Bibitem{Che88}
\by K.~G.~Chetyrkin
\paper Operator expansions in the minimal subtraction scheme. II.~Explicit formulas for coefficient functions
\jour TMF
\yr 1988
\vol 76
\issue 2
\pages 207--218
\mathnet{http://mi.mathnet.ru/tmf5054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=965507}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 76
\issue 2
\pages 809--817
\crossref{https://doi.org/10.1007/BF01028580}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U240300005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5054
  • https://www.mathnet.ru/eng/tmf/v76/i2/p207
  • This publication is cited in the following 47 articles:
    1. Mrigankamauli Chakraborty, Franz Herzog, “The asymptotic Hopf algebra of Feynman integrals”, J. High Energ. Phys., 2025:1 (2025)  crossref
    2. Wen Chen, “Unregulated divergences of Feynman integrals”, Physics Letters B, 862 (2025), 139299  crossref
    3. Yao Ma, “Identifying regions in wide-angle scattering via graph-theoretical approaches”, J. High Energ. Phys., 2024:9 (2024)  crossref
    4. Einan Gardi, Franz Herzog, Stephen Jones, Yao Ma, Johannes Schlenk, “The on-shell expansion: from Landau equations to the Newton polytope”, J. High Energ. Phys., 2023:7 (2023)  crossref
    5. A. V. Belitsky, L. V. Bork, V. A. Smirnov, “Off-shell form factor in $ \mathcal{N} $=4 sYM at three loops”, J. High Energ. Phys., 2023:11 (2023)  crossref
    6. Tatiana Yu. Semenova, Alexander V. Smirnov, Vladimir A. Smirnov, “On the status of expansion by regions”, Eur. Phys. J. C, 79:2 (2019)  crossref
    7. Roman N. Lee, Alexander V. Smirnov, Vladimir A. Smirnov, “Evaluating 'elliptic' master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points”, J. High Energ. Phys., 2018:7 (2018)  crossref
    8. J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, C. Schneider, F. Wißbrock, “Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses”, Nuclear Physics B, 921 (2017), 585  crossref
    9. Jantzen B., Smirnov A.V., Smirnov V.A., “Expansion by Regions: Revealing Potential and Glauber Regions Automatically”, Eur. Phys. J. C, 72:9 (2012), 2139  crossref  isi
    10. Burkhard Eden, Paul Heslop, Gregory P. Korchemsky, Vladimir A. Smirnov, Emery Sokatchev, “Five-loop Konishi in N=4 SYM”, Nuclear Physics B, 862:1 (2012), 123  crossref
    11. Vladimir A. Smirnov, Springer Tracts in Modern Physics, 250, Analytic Tools for Feynman Integrals, 2012, 203  crossref
    12. A. Kotikov, J.H. Kühn, O. Veretin, “Two-loop formfactors in theories with mass gap and Z-boson production”, Nuclear Physics B, 788:1-2 (2008), 47  crossref
    13. Jantzen, B, “The two-loop vector form factor in the Sudakov limit”, European Physical Journal C, 47:3 (2006), 671  crossref  isi
    14. Bernd A. Kniehl, Anatoly V. Kotikov, “Calculating four-loop tadpoles with one non-zero mass”, Physics Letters B, 638:5-6 (2006), 531  crossref
    15. Bern, Z, “Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond”, Physical Review D, 72:8 (2005), 085001  crossref  isi
    16. A. Onishchenko, O. Veretin, “Two-loop electroweak corrections to Δr”, Nuclear Physics B - Proceedings Supplements, 116 (2003), 235  crossref
    17. A Onishchenko, O Veretin, “Two-loop bosonic electroweak corrections to the muon lifetime and MZ–MW interdependence”, Physics Letters B, 551:1-2 (2003), 111  crossref
    18. M. Awramik, M. Czakon, A. Onishchenko, O. Veretin, “Bosonic corrections toΔrat the two-loop level”, Phys. Rev. D, 68:5 (2003)  crossref
    19. Smirnov, VA, “Applied asymptotic expansions in momenta and masses - Introduction”, Applied Asymptotic Expansions in Momenta and Masses, 177 (2002), 1  crossref  isi
    20. S. Laporta, “High-precision ϵ-expansions of massive four-loop vacuum bubbles”, Physics Letters B, 549:1-2 (2002), 115  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :109
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025