Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 67, Number 2, Pages 263–288 (Mi tmf5006)  

This article is cited in 2 scientific papers (total in 2 papers)

Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II. Description of trajectories near a separatrix by the matching method

L. A. Pokrovskii
References:
Abstract: By the method of dividing trajectories into stages and matching them, a theory is developed for constructing asymptotic solutions to Lorenz's system of nonlinear differential equations in the limit of large Rayleigh numbers in a small neighborhood of the zeroth separatrix surface. For this neighborhood, the mapping of Poincar6 successions is obtained and its topological properties described. The use of scaling leads to the finding of a simple succession map without a small parameter describing a large number of bifurcations with increase in the period multiplicity.
Received: 03.03.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 67, Issue 2, Pages 490–507
DOI: https://doi.org/10.1007/BF01118156
Bibliographic databases:
Language: Russian
Citation: L. A. Pokrovskii, “Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II. Description of trajectories near a separatrix by the matching method”, TMF, 67:2 (1986), 263–288; Theoret. and Math. Phys., 67:2 (1986), 490–507
Citation in format AMSBIB
\Bibitem{Pok86}
\by L.~A.~Pokrovskii
\paper Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II.~Description of trajectories near a~separatrix by the matching method
\jour TMF
\yr 1986
\vol 67
\issue 2
\pages 263--288
\mathnet{http://mi.mathnet.ru/tmf5006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=851561}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 67
\issue 2
\pages 490--507
\crossref{https://doi.org/10.1007/BF01118156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986F368200008}
Linking options:
  • https://www.mathnet.ru/eng/tmf5006
  • https://www.mathnet.ru/eng/tmf/v67/i2/p263
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:672
    Full-text PDF :216
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024