Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 67, Number 2, Pages 177–185 (Mi tmf4997)  

This article is cited in 11 scientific papers (total in 11 papers)

Percolation in random fields. III

S. A. Molchanov, A. K. Stepanov
References:
Abstract: An ergodic symmetrically distributed random field on a plane with infinitely smooth realizations and finite moments up to any order inclusively that does not admit percolation at any level <h<+ is constructed.
Received: 20.03.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 67, Issue 2, Pages 434–439
DOI: https://doi.org/10.1007/BF01118150
Bibliographic databases:
Language: Russian
Citation: S. A. Molchanov, A. K. Stepanov, “Percolation in random fields. III”, TMF, 67:2 (1986), 177–185; Theoret. and Math. Phys., 67:2 (1986), 434–439
Citation in format AMSBIB
\Bibitem{MolSte86}
\by S.~A.~Molchanov, A.~K.~Stepanov
\paper Percolation in random fields.~III
\jour TMF
\yr 1986
\vol 67
\issue 2
\pages 177--185
\mathnet{http://mi.mathnet.ru/tmf4997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=851557}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 67
\issue 2
\pages 434--439
\crossref{https://doi.org/10.1007/BF01118150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986F368200002}
Linking options:
  • https://www.mathnet.ru/eng/tmf4997
  • https://www.mathnet.ru/eng/tmf/v67/i2/p177
    Cycle of papers
    This publication is cited in the following 11 articles:
    1. Stephen Muirhead, Igor Wigman, “The giant component of excursion sets of spherical Gaussian ensembles: existence, uniqueness, and volume concentration”, Probab. Theory Relat. Fields, 2025  crossref
    2. Reimer Kühn, “Level-set percolation of Gaussian random fields on complex networks”, Phys. Rev. E, 110:3 (2024)  crossref
    3. Reimer Kühn, “Gaussian level-set percolation on complex networks”, Phys. Rev. E, 110:5 (2024)  crossref
    4. Stephen Muirhead, “A sprinkled decoupling inequality for Gaussian processes and applications”, Electron. J. Probab., 28:none (2023)  crossref
    5. Dmitry Beliaev, “Smooth Gaussian fields and percolation”, Probab. Surveys, 20:none (2023)  crossref
    6. Franco Severo, “Sharp phase transition for Gaussian percolation in all dimensions”, Annales Henri Lebesgue, 5 (2022), 987  crossref
    7. Marcia A. Cooper, William W. Erikson, Michael S. Oliver, “Electrical conductivity of porous binary powder mixtures”, Mechanics of Materials, 162 (2021), 104026  crossref
    8. Nina Javerzat, Sebastian Grijalva, Alberto Rosso, Raoul Santachiara, “Topological effects and conformal invariance in long-range correlated random surfaces”, SciPost Phys., 9:4 (2020)  crossref
    9. Stephen Muirhead, Hugo Vanneuville, “The sharp phase transition for level set percolation of smooth planar Gaussian fields”, Ann. Inst. H. Poincaré Probab. Statist., 56:2 (2020)  crossref
    10. Alejandro Rivera, Hugo Vanneuville, “The critical threshold for Bargmann–Fock percolation”, Annales Henri Lebesgue, 3 (2020), 169  crossref
    11. Alejandro Rivera, Hugo Vanneuville, “Quasi-independence for nodal lines”, Ann. Inst. H. Poincaré Probab. Statist., 55:3 (2019)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :117
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025