Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 3, Pages 431–444 (Mi tmf4955)  

This article is cited in 12 scientific papers (total in 12 papers)

Quantum few-body problem with internal structure. I. Two-body problem

Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, B. S. Pavlov
References:
Abstract: The methods of the theory of extensions to an auxiliary Hilbert space are used to construct in the two-particle sector a scattering theory for particles possessing internal structure. The analytic properties of the amplitudes of resonance scattering and Green's functions corresponding to a class of singular energy-dependent interactions are investigated.
Received: 23.11.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 75, Issue 3, Pages 630–639
DOI: https://doi.org/10.1007/BF01036264
Bibliographic databases:
Language: Russian
Citation: Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, B. S. Pavlov, “Quantum few-body problem with internal structure. I. Two-body problem”, TMF, 75:3 (1988), 431–444; Theoret. and Math. Phys., 75:3 (1988), 630–639
Citation in format AMSBIB
\Bibitem{KupMakMer88}
\by Yu.~A.~Kuperin, K.~A.~Makarov, S.~P.~Merkur'ev, A.~K.~Motovilov, B.~S.~Pavlov
\paper Quantum few-body problem with internal structure. I.~Two-body problem
\jour TMF
\yr 1988
\vol 75
\issue 3
\pages 431--444
\mathnet{http://mi.mathnet.ru/tmf4955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=959726}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 3
\pages 630--639
\crossref{https://doi.org/10.1007/BF01036264}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U173000011}
Linking options:
  • https://www.mathnet.ru/eng/tmf4955
  • https://www.mathnet.ru/eng/tmf/v75/i3/p431
    Cycle of papers
    This publication is cited in the following 12 articles:
    1. V.I. Kukulin, O.A. Rubtsova, M.N. Platonova, V.N. Pomerantsev, H. Clement, “Role of the d⁎(2380) dibaryon in NN interaction”, Physics Letters B, 801 (2020), 135146  crossref
    2. V. I. Kukulin, O. A. Rubtsova, M. N. Platonova, V. N. Pomerantsev, H. Clement, T. Skorodko, “Nature of \varvecS-wave \varvecNN interaction and dibaryon production at nucleonic resonance thresholds”, Eur. Phys. J. A, 56:9 (2020)  crossref
    3. Pomerantsev V.N. Kukulin V.I. Rubtsova O.A., “Model With Coupled Internal and External Channels For <Bold>2N</Bold> and <Bold>3N</Bold> Systems”, Few-Body Syst., 60:3 (2019), UNSP 48  crossref  isi
    4. A. A. Arsen'ev, “Mathematical Model of Resonances and Tunneling in a System with a Bound State”, Theoret. and Math. Phys., 136:3 (2003), 1336–1345  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Yu. A. Kuperin, S. B. Levin, “Extension theory approach to scattering and annihilation in the ˉpd system”, Theoret. and Math. Phys., 118:1 (1999), 60–76  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Yan V. Fyodorov, Hans-Jürgen Sommers, “Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance”, Journal of Mathematical Physics, 38:4 (1997), 1918  crossref
    7. P. Kurasov, “Energy Dependent Boundary Conditions and the Few-Body Scattering Problem”, Rev. Math. Phys., 09:07 (1997), 853  crossref
    8. A. N. Safronov, “Three-dimensional manifestly Poincaré-invariant approach to relativistic three-body problem”, Theoret. and Math. Phys., 103:2 (1995), 502–524  mathnet  crossref  mathscinet  zmath  isi
    9. A. K. Motovilov, “Algebraic version of extension theory for a quantum system with internal structure”, Theoret. and Math. Phys., 97:2 (1993), 1217–1228  mathnet  crossref  mathscinet  zmath  isi
    10. A. A. Kiselev, B. S. Pavlov, N. N. Penkina, M. G. Suturin, “Allowance for interaction symmetry in the theory of extensions”, Theoret. and Math. Phys., 91:2 (1992), 453–461  mathnet  crossref  mathscinet  isi
    11. A. N. Safronov, “Effects of particle structure in the three-body problem”, Theoret. and Math. Phys., 89:3 (1991), 1310–1323  mathnet  crossref  mathscinet  isi
    12. Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, B. S. Pavlov, “Quantum few-body problem with internal structure. II. Three-body problem”, Theoret. and Math. Phys., 76:2 (1988), 834–847  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:472
    Full-text PDF :179
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025