Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 3, Pages 323–339 (Mi tmf4945)  

This article is cited in 10 scientific papers (total in 10 papers)

2+1 Toda chain. I. Inverse scattering method

V. D. Lipovskii, A. V. Shirokov
References:
Abstract: A formal scheme of the inverse scattering method is constructed for the 2+1 Toda chain in the class of rapidly decreasing Cauchy data.
Received: 29.10.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 75, Issue 3, Pages 555–566
DOI: https://doi.org/10.1007/BF01036254
Bibliographic databases:
Language: Russian
Citation: V. D. Lipovskii, A. V. Shirokov, “2+1 Toda chain. I. Inverse scattering method”, TMF, 75:3 (1988), 323–339; Theoret. and Math. Phys., 75:3 (1988), 555–566
Citation in format AMSBIB
\Bibitem{LipShi88}
\by V.~D.~Lipovskii, A.~V.~Shirokov
\paper $2+1$~Toda chain. I.~Inverse scattering method
\jour TMF
\yr 1988
\vol 75
\issue 3
\pages 323--339
\mathnet{http://mi.mathnet.ru/tmf4945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=959718}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 3
\pages 555--566
\crossref{https://doi.org/10.1007/BF01036254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U173000001}
Linking options:
  • https://www.mathnet.ru/eng/tmf4945
  • https://www.mathnet.ru/eng/tmf/v75/i3/p323
    Cycle of papers
    This publication is cited in the following 10 articles:
    1. Sheng-Nan Wang, Han-Han Sheng, Guo-Fu Yu, “Dynamics of the coupled (2+1)-dimensional Fokas system”, Z. Angew. Math. Phys., 76:1 (2025)  crossref
    2. Javier Villarroel, Julia Prada, Pilar G Estévez, “Weakly decaying solutions of nonlinear Schrödinger equation in the plane”, J. Phys. A: Math. Theor., 50:49 (2017), 495203  crossref
    3. Javier Villarroel, Julia Prada, Pilar G. Estévez, “Discrete Spectrum of 2 + 1-Dimensional Nonlinear Schrödinger Equation and Dynamics of Lumps”, Advances in Mathematical Physics, 2016 (2016), 1  crossref
    4. Javier Villarroel, J. Prada, P. G. Estévez, “Dynamics of Lump Solutions in a 2 + 1 NLS Equation”, Stud Appl Math, 122:4 (2009), 395  crossref
    5. Javier Villarroel, Sarbarish Chakravarty, Mark J Ablowitz, “On a Volterra system”, Nonlinearity, 9:5 (1996), 1113  crossref
    6. V E Vekslerchik, “The 2D Toda lattice and the Ablowitz-Ladik hierarchy”, Inverse Problems, 11:2 (1995), 463  crossref
    7. J Villarroel, M J Ablowitz, “Solutions to the 2+1 Toda equation”, J. Phys. A: Math. Gen., 27:3 (1994), 931  crossref
    8. Javier Villarroel, Mark J. Ablowitz, “On the inverse scattering transform of the 2 + 1 Toda equation”, Physica D: Nonlinear Phenomena, 65:1-2 (1993), 48  crossref
    9. Javier Villarroel, Mark J. Ablowitz, “On the method of solution to the 2+1 Toda equation”, Physics Letters A, 163:4 (1992), 293  crossref
    10. V. D. Lipovskii, A. V. Shirokov, “2+1 Toda chain. II. Hamiltonian formalism”, Theoret. and Math. Phys., 84:1 (1990), 718–728  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :120
    References:48
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025