Abstract:
Using the example of the supersymmetric Witten mechanics we prove that the Hamiltonian systems with equal number of Grassmann even and Grassmann odd canonical variables are inherently characterized by the odd Poisson bracket in addition to the even one. The duality between even and odd integrals of motion under the change of the Poisson brackets parity is established for such systems.
Citation:
D. V. Volkov, A. I. Pashnev, V. A. Soroka, V. I. Tkach, “Hamiltonian dynamical systems with even and odd Poisson brackets”, TMF, 79:1 (1989), 117–126; Theoret. and Math. Phys., 79:1 (1989), 424–430
\Bibitem{VolPasSor89}
\by D.~V.~Volkov, A.~I.~Pashnev, V.~A.~Soroka, V.~I.~Tkach
\paper Hamiltonian dynamical systems with even and odd Poisson brackets
\jour TMF
\yr 1989
\vol 79
\issue 1
\pages 117--126
\mathnet{http://mi.mathnet.ru/tmf4814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1000947}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 79
\issue 1
\pages 424--430
\crossref{https://doi.org/10.1007/BF01015783}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CA79100011}
Linking options:
https://www.mathnet.ru/eng/tmf4814
https://www.mathnet.ru/eng/tmf/v79/i1/p117
This publication is cited in the following 5 articles:
Yu. A. Markov, M. A. Markova, N. Yu. Markov, “Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction”, Int. J. Mod. Phys. A, 38:02 (2023)
D.V. Soroka, V.A. Soroka, J. Wess, “Supersymmetric model with Grassmann-odd Lagrangian”, Nuclear Physics B - Proceedings Supplements, 102-103 (2001), 264
V.A. Soroka, “Supersymmetry and the odd Poisson bracket”, Nuclear Physics B - Proceedings Supplements, 101:1-3 (2001), 26
Dmitrij V. Soroka, Vyacheslav A. Soroka, Julius Wess, “Supersymmetric D=1, N=1 model with Grassmann-odd Lagrangian”, Physics Letters B, 512:1-2 (2001), 197
Pashnev, A, “Description of the higher massless irreducible integer spins in the BRST approach”, Modern Physics Letters A, 13:23 (1998), 1853