Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 1, Pages 137–147 (Mi tmf4767)  

Construction of theory of a binary mixture of nonideal bose gases (or liquids) by the method of collective variables. III. Perturbation theory

G. O. Balabanyan
References:
Abstract: For a binary mixture of nonideal Bose gases (or liquids) the method of collective variables [1] is used to construct a perturbation theory, and the corrections of lowest order to the wave function and energy of the ground state are found. For the model of a “hard-sphere pseudopotential” (and the use of the zeroth approximation [1]) the results of computer experiments are given. It has been established numerically that for any density and concentration of the admixture (second component) and arbitrary (but allowed by the theory of [1]) scattering lengths a binary Bose mixture does not separate. The application of the theory to $\mathrm {He}^4$ and $\mathrm D_2$ or $\mathrm {He}^4$ and $\mathrm {HT}$.
Received: 22.10.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 75, Issue 1, Pages 425–433
DOI: https://doi.org/10.1007/BF01017177
Bibliographic databases:
Language: Russian
Citation: G. O. Balabanyan, “Construction of theory of a binary mixture of nonideal bose gases (or liquids) by the method of collective variables. III. Perturbation theory”, TMF, 75:1 (1988), 137–147; Theoret. and Math. Phys., 75:1 (1988), 425–433
Citation in format AMSBIB
\Bibitem{Bal88}
\by G.~O.~Balabanyan
\paper Construction of theory of a~binary mixture of nonideal bose gases (or~liquids) by the method of collective variables. III.~Perturbation theory
\jour TMF
\yr 1988
\vol 75
\issue 1
\pages 137--147
\mathnet{http://mi.mathnet.ru/tmf4767}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 1
\pages 425--433
\crossref{https://doi.org/10.1007/BF01017177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172800012}
Linking options:
  • https://www.mathnet.ru/eng/tmf4767
  • https://www.mathnet.ru/eng/tmf/v75/i1/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :104
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024