Abstract:
The paper considers $N=1$ supersymmetric Yang–Mills theories in dimensions $d=4$
and $d=6$ on the light cone. The $N=2$ theory in $d=4$ is obtained by dimensional
reduction. The results are represented in the superfield formulation of Mandelstam.
Feynman rules for the superfields are obtained. The well-known fact is confirmed
that the $N=2$ theory in $d=4$ has only single-loop divergences in the gauge considered.
Citation:
S. V. Ketov, “Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang–Mills theories on the light cone”, TMF, 63:2 (1985), 219–229; Theoret. and Math. Phys., 63:2 (1985), 470–476
\Bibitem{Ket85}
\by S.~V.~Ketov
\paper Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang--Mills theories on the light cone
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 219--229
\mathnet{http://mi.mathnet.ru/tmf4757}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=800065}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 470--476
\crossref{https://doi.org/10.1007/BF01017903}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AVT5500005}
Linking options:
https://www.mathnet.ru/eng/tmf4757
https://www.mathnet.ru/eng/tmf/v63/i2/p219
This publication is cited in the following 4 articles:
Chih-Hao Fu, “Generating MHV super-vertices in light-cone gauge”, J. High Energ. Phys., 2010:4 (2010)
THOMAS BÖTTNER, SERGEI V. KETOV, THOMAS LAU, “MANIFESTLY N = 3 SUPERSYMMETRIC EULER–HEISENBERG ACTION IN LIGHT-CONE SUPERSPACE”, Mod. Phys. Lett. A, 15:08 (2000), 587
Sergei V. Ketov, “Solitons, Monopoles, and Duality: From Sine-Gordon to Seiberg-Witten”, Fortschr. Phys., 45:3-4 (1997), 237
S. V. Ketov, “N = 2 Supersymmetry and the IrreducibleSU(2) -Extended Superfields”, Fortschr. Phys., 36:6 (1988), 361