Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 2, Pages 208–218 (Mi tmf4756)  

This article is cited in 27 scientific papers (total in 27 papers)

RR operation in the minimal subtraction scheme

V. A. Smirnov, K. G. Chetyrkin
References:
Abstract: The formalism of the RR operation [1] is developed; it generalizes the RR operation and eliminates both ultraviolet and infrared divergences. By explicit formulation of the concept of an infrared counterterm it is shown that the calculation of an arbitrary (+1)-loop ultraviolet or infrared eounterterm in the minimal subtraction scheme can be reduced to the finding of the divergent and finite parts of certain massless Feynman integrals that depend only on a single external momentum with number of loops not exceeding .
Received: 08.06.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 2, Pages 462–469
DOI: https://doi.org/10.1007/BF01017902
Bibliographic databases:
Language: Russian
Citation: V. A. Smirnov, K. G. Chetyrkin, “R operation in the minimal subtraction scheme”, TMF, 63:2 (1985), 208–218; Theoret. and Math. Phys., 63:2 (1985), 462–469
Citation in format AMSBIB
\Bibitem{SmiChe85}
\by V.~A.~Smirnov, K.~G.~Chetyrkin
\paper $R^*$ operation in the minimal subtraction scheme
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 208--218
\mathnet{http://mi.mathnet.ru/tmf4756}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=800064}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 462--469
\crossref{https://doi.org/10.1007/BF01017902}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AVT5500004}
Linking options:
  • https://www.mathnet.ru/eng/tmf4756
  • https://www.mathnet.ru/eng/tmf/v63/i2/p208
  • This publication is cited in the following 27 articles:
    1. Paul-Hermann Balduf, Springer Theses, Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory, 2024, 81  crossref
    2. J. A. Gracey, “Explicit no- π2 renormalization schemes in QCD at five loops”, Phys. Rev. D, 109:3 (2024)  crossref
    3. Jae Goode, Franz Herzog, Anthony Kennedy, Sam Teale, Jos Vermaseren, “Tensor reduction for Feynman integrals with Lorentz and spinor indices”, J. High Energ. Phys., 2024:11 (2024)  crossref
    4. Weiguang Cao, Franz Herzog, Tom Melia, Jasper Roosmale Nepveu, “Non-linear non-renormalization theorems”, J. High Energ. Phys., 2023:8 (2023)  crossref
    5. Anatoly V. Kotikov, “Effective Quantum Field Theory Methods for Calculating Feynman Integrals”, Symmetry, 16:1 (2023), 52  crossref
    6. Giulio Falcioni, Franz Herzog, “Renormalization of gluonic leading-twist operators in covariant gauges”, J. High Energ. Phys., 2022:5 (2022)  crossref
    7. Zeno Capatti, Valentin Hirschi, Ben Ruijl, “Local unitarity: cutting raised propagators and localising renormalisation”, J. High Energ. Phys., 2022:10 (2022)  crossref
    8. John Collins, Ted C. Rogers, Nobuo Sato, “Positivity and renormalization of parton densities”, Phys. Rev. D, 105:7 (2022)  crossref
    9. Kotikov V A., “Some Examples of Calculation of Massless and Massive Feynman Integrals”, Particles, 4:3 (2021), 361–380  crossref  isi
    10. J. A. M. Vermaseren, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 501  crossref
    11. Gudrun Heinrich, “Collider physics at the precision frontier”, Physics Reports, 922 (2021), 1  crossref
    12. Robert Beekveldt, Michael Borinsky, Franz Herzog, “The Hopf algebra structure of the R∗-operation”, J. High Energ. Phys., 2020:7 (2020)  crossref
    13. Kotikov A.V. Teber S., “Multi-Loop Techniques For Massless Feynman Diagram Calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41  crossref  isi
    14. Franz Herzog, “Geometric IR subtraction for final state real radiation”, J. High Energ. Phys., 2018:8 (2018)  crossref
    15. F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, A. Vogt, “The five-loop beta function of Yang-Mills theory with fermions”, J. High Energ. Phys., 2017:2 (2017)  crossref
    16. Franz Herzog, Ben Ruijl, “The R *-operation for Feynman graphs with generic numerators”, J. High Energ. Phys., 2017:5 (2017)  crossref
    17. K. G. Chetyrkin, G. Falcioni, F. Herzog, J.A.M. Vermaseren, “Five-loop renormalisation of QCD in covariant gauges”, J. High Energ. Phys., 2017:10 (2017)  crossref
    18. S. Penati, A. Santambrogio, D. Zanon, “Gravitational dressing of N = 2 σ-models beyond leading order”, Nuclear Physics B, 499:1-2 (1997), 479  crossref
    19. S. Penati, A. Santambrogio, D. Zanon, “Renormalization group flows in σ-models coupled to two-dimensional dynamical gravity”, Nuclear Physics B, 483:1-2 (1997), 495  crossref
    20. S. Penati, A. Santambrogio, D. Zanon, “Dressing of the beta-function in sigma-models coupled by two dimensional gravity”, Nuclear Physics B - Proceedings Supplements, 57:1-3 (1997), 216  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :112
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025