Abstract:
Formulas for the quasiclassical asymptotics of point-source (Green's) functions (uniform
with respect to x) of the stationary Schrödinger equation are derived. Assuming that the system of Newton's equations in the potential field V(x), where V(x) is a smooth and rapidly diminishing function, has no finite orbits at the energy level E, a proof of the quasiclassical asymptotics for the point-source function is presented.
Citation:
V. V. Kucherenko, “Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation”, TMF, 1:3 (1969), 384–406; Theoret. and Math. Phys., 1:3 (1969), 294–310
\Bibitem{Kuc69}
\by V.~V.~Kucherenko
\paper Quasiclassical asymptotics of a~point-source function for the stationary Schr\"odinger equation
\jour TMF
\yr 1969
\vol 1
\issue 3
\pages 384--406
\mathnet{http://mi.mathnet.ru/tmf4587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479166}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 3
\pages 294--310
\crossref{https://doi.org/10.1007/BF01035745}
Linking options:
https://www.mathnet.ru/eng/tmf4587
https://www.mathnet.ru/eng/tmf/v1/i3/p384
This publication is cited in the following 34 articles:
Dimitrios A. Mitsoudis, Michael Plexousakis, George N. Makrakis, Charalambos Makridakis, “Approximations of the Helmholtz equation with variable wave number in one dimension”, Stud Appl Math, 2024
A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides”, Theoret. and Math. Phys., 214:1 (2023), 1–23
S. T. Gataullin, T. M. Gataullin, “To the Problem of a Point Source in an Inhomogeneous Medium”, Math. Notes, 114:6 (2023), 1212–1216
S. Yu. Dobrokhotov, A. A. Tolchennikov, “Keplerian Trajectories and an Asymptotic Solution of the Schrödinger Equation with Repulsive Coulomb Potential and Localized Right-Hand Side”, Russ. J. Math. Phys., 29:4 (2022), 456
Reijnders K.J.A. Minenkov D.S. Katsnelson I M. Dobrokhotov S.Yu., “Electronic Optics in Graphene in the Semiclassical Approximation”, Ann. Phys., 397 (2018), 65–135
A. Anikin, S. Dobrokhotov, V. Nazaikinskii, M. Rouleux, 2018 Days on Diffraction (DD), 2018, 17
A. Yu. Anikin, S. Yu. Dobrokhotov, V.E. Nazaikinskii, M. Rouleux, 2017 Days on Diffraction (DD), 2017, 18
S. Yu. Dobrokhotov, D. S. Minenkov, M. Rouleux, “The Maupertuis–Jacobi Principle for Hamiltonians of the Form F(x,|p|) in Two-Dimensional Stationary Semiclassical Problems”, Math. Notes, 97:1 (2015), 42–49
S.K. Giannopoulou, G.N. Makrakis, “Uniformization of WKB functions by Wigner transform”, Applicable Analysis, 93:3 (2014), 624
S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics”, Theoret. and Math. Phys., 177:3 (2013), 1579–1605
Ratiu T.S. Suleimanova A.A. Shafarevich A.I., “Spectral Series of the Schrodinger Operator with Delta-Potential on a Three-Dimensional Spherically Symmetric Manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335
T. A. Filatova, A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theoret. and Math. Phys., 164:2 (2010), 1064–1080
B. R. Vainberg, Encyclopaedia of Mathematical Sciences, 34, Partial Differential Equations V, 1999, 53
Serge Iovleff, JoséR. León, “High-frequency approximation for the Helmholtz equation: A probabilistic approach”, Reports on Mathematical Physics, 40:1 (1997), 1
V. V. Belov, S. Yu. Dobrokhotov, “Semiclassical maslov asymptotics with complex phases. I. General approach”, Theoret. and Math. Phys., 92:2 (1992), 843–868
B. R. Vainberg, “Asymptotic expansion of the spectral function of elliptic operators inR n”, J Math Sci, 47:3 (1989), 2537
B. R. Vainberg, “Parametrix and asymptotics of the spectral function of differential operators in Rn”, Math. USSR-Sb., 58:1 (1987), 245–265
B. R. Vainberg, “A complete asymptotic expansion of the spectral function of second order elliptic operators in Rn”, Math. USSR-Sb., 51:1 (1985), 191–206
M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42