Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1969, Volume 1, Number 3, Pages 384–406 (Mi tmf4587)  

This article is cited in 34 scientific papers (total in 34 papers)

Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation

V. V. Kucherenko
References:
Abstract: Formulas for the quasiclassical asymptotics of point-source (Green's) functions (uniform with respect to x) of the stationary Schrödinger equation are derived. Assuming that the system of Newton's equations in the potential field V(x), where V(x) is a smooth and rapidly diminishing function, has no finite orbits at the energy level E, a proof of the quasiclassical asymptotics for the point-source function is presented.
Received: 23.04.1969
English version:
Theoretical and Mathematical Physics, 1969, Volume 1, Issue 3, Pages 294–310
DOI: https://doi.org/10.1007/BF01035745
Bibliographic databases:
Language: Russian
Citation: V. V. Kucherenko, “Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation”, TMF, 1:3 (1969), 384–406; Theoret. and Math. Phys., 1:3 (1969), 294–310
Citation in format AMSBIB
\Bibitem{Kuc69}
\by V.~V.~Kucherenko
\paper Quasiclassical asymptotics of a~point-source function for the stationary Schr\"odinger equation
\jour TMF
\yr 1969
\vol 1
\issue 3
\pages 384--406
\mathnet{http://mi.mathnet.ru/tmf4587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479166}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 3
\pages 294--310
\crossref{https://doi.org/10.1007/BF01035745}
Linking options:
  • https://www.mathnet.ru/eng/tmf4587
  • https://www.mathnet.ru/eng/tmf/v1/i3/p384
  • This publication is cited in the following 34 articles:
    1. Dimitrios A. Mitsoudis, Michael Plexousakis, George N. Makrakis, Charalambos Makridakis, “Approximations of the Helmholtz equation with variable wave number in one dimension”, Stud Appl Math, 2024  crossref
    2. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides”, Theoret. and Math. Phys., 214:1 (2023), 1–23  mathnet  crossref  crossref  mathscinet  adsnasa
    3. S. T. Gataullin, T. M. Gataullin, “To the Problem of a Point Source in an Inhomogeneous Medium”, Math. Notes, 114:6 (2023), 1212–1216  mathnet  crossref  crossref  mathscinet
    4. S. Yu. Dobrokhotov, A. A. Tolchennikov, “Keplerian Trajectories and an Asymptotic Solution of the Schrödinger Equation with Repulsive Coulomb Potential and Localized Right-Hand Side”, Russ. J. Math. Phys., 29:4 (2022), 456  crossref
    5. Reijnders K.J.A. Minenkov D.S. Katsnelson I M. Dobrokhotov S.Yu., “Electronic Optics in Graphene in the Semiclassical Approximation”, Ann. Phys., 397 (2018), 65–135  crossref  mathscinet  zmath  isi  scopus
    6. A. Anikin, S. Dobrokhotov, V. Nazaikinskii, M. Rouleux, 2018 Days on Diffraction (DD), 2018, 17  crossref
    7. A. Yu. Anikin, S. Yu. Dobrokhotov, V.E. Nazaikinskii, M. Rouleux, 2017 Days on Diffraction (DD), 2017, 18  crossref
    8. S. Yu. Dobrokhotov, D. S. Minenkov, M. Rouleux, “The Maupertuis–Jacobi Principle for Hamiltonians of the Form F(x,|p|) in Two-Dimensional Stationary Semiclassical Problems”, Math. Notes, 97:1 (2015), 42–49  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. S.K. Giannopoulou, G.N. Makrakis, “Uniformization of WKB functions by Wigner transform”, Applicable Analysis, 93:3 (2014), 624  crossref
    10. S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics”, Theoret. and Math. Phys., 177:3 (2013), 1579–1605  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Ratiu T.S. Suleimanova A.A. Shafarevich A.I., “Spectral Series of the Schrodinger Operator with Delta-Potential on a Three-Dimensional Spherically Symmetric Manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335  crossref  isi
    12. T. A. Filatova, A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theoret. and Math. Phys., 164:2 (2010), 1064–1080  mathnet  crossref  crossref  adsnasa  isi
    13. B. R. Vainberg, Encyclopaedia of Mathematical Sciences, 34, Partial Differential Equations V, 1999, 53  crossref
    14. Serge Iovleff, JoséR. León, “High-frequency approximation for the Helmholtz equation: A probabilistic approach”, Reports on Mathematical Physics, 40:1 (1997), 1  crossref
    15. V. V. Belov, S. Yu. Dobrokhotov, “Semiclassical maslov asymptotics with complex phases. I. General approach”, Theoret. and Math. Phys., 92:2 (1992), 843–868  mathnet  crossref  mathscinet  isi
    16. B. R. Vainberg, “Asymptotic expansion of the spectral function of elliptic operators inR n”, J Math Sci, 47:3 (1989), 2537  crossref
    17. B. R. Vainberg, “Parametrix and asymptotics of the spectral function of differential operators in Rn”, Math. USSR-Sb., 58:1 (1987), 245–265  mathnet  crossref  mathscinet  zmath
    18. B. R. Vainberg, “A complete asymptotic expansion of the spectral function of second order elliptic operators in Rn”, Math. USSR-Sb., 51:1 (1985), 191–206  mathnet  crossref  mathscinet  zmath
    19. M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    20. V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :452
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025