Abstract:
It is shown that the equation h2◻ψ+k2ψ7/3=0 for h→0 transforms into a system of dynamic equations of a monoatomic ideal gas (cv=3/2), and the equation h2◻ψ+k2|ψ|2ψ=0 for h→0 transforms into a system of dynamic equations of a monoatomic ideal gas (cv=1).
Citation:
V. P. Maslov, “Transition of the Heisenberg equation for h→0 to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics”, TMF, 1:3 (1969), 378–383; Theoret. and Math. Phys., 1:3 (1969), 289–293
\Bibitem{Mas69}
\by V.~P.~Maslov
\paper Transition of the Heisenberg equation for $h\to 0$ to the dynamic equation of a monoatomic ideal gas and quantization of relativistic hydrodynamics
\jour TMF
\yr 1969
\vol 1
\issue 3
\pages 378--383
\mathnet{http://mi.mathnet.ru/tmf4586}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468954}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 3
\pages 289--293
\crossref{https://doi.org/10.1007/BF01035744}
Linking options:
https://www.mathnet.ru/eng/tmf4586
https://www.mathnet.ru/eng/tmf/v1/i3/p378
This publication is cited in the following 11 articles:
A. M. Kamchatnov, “Evolution of Nonlinear Wave Pulses in the sine-Gordon Equation Theory”, J. Exp. Theor. Phys., 136:5 (2023), 653
S. Yu. Dobrokhotov, D. S. Minenkov, “Remark on the phase shift in the Kuzmak–Whitham ansatz”, Theoret. and Math. Phys., 166:3 (2011), 303–316
B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Encyclopaedia of Mathematical Sciences, 4, Dynamical Systems IV, 2001, 177
O. I. Bogoyavlenskii, “Breaking solitons. V. Systems of hydrodynamic type”, Math. USSR-Izv., 38:3 (1992), 439–454
O. I. Bogoyavlenskii, “Breaking solitons in 2+1-dimensional integrable equations”, Russian Math. Surveys, 45:4 (1990), 1–86
B. Dubrovin, “Weakly deformed soliton lattices”, Nuclear Physics B - Proceedings Supplements, 18:1 (1990), 23
B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124
S. A. Lomov, A. G. Eliseev, “Asymptotic integration of singularly perturbed problems”, Russian Math. Surveys, 43:3 (1988), 1–63
S. P. Novikov, “The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems”, Russian Math. Surveys, 40:4 (1985), 85–98
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42
S. A. Lomov, “The method of perturbations for singular problems”, Math. USSR-Izv., 6:3 (1972), 631–648