Abstract:
Brownian motion in a fluid with a temperature gradient is investigated by using Luttinger's
method of introducing auxiliary external fields. The Einstein relation for the diffusion coefficient
D=kT/ζ and a similar relation for the thermal diffusion coefficient DT=nσkT1+η/kTζ are obtained (nσ is the density of the Brownian particles, ζ is the friction constant, and η is the heat drag coefficient of the Brownian particles). The expressions obtained are compared with the results of other works on diffusion of Brownian particles in a fluid with a temperature gradient.
Citation:
A. G. Bashkirov, “Statistical theory of thermal diffusion of Brownian particles”, TMF, 1:2 (1969), 275–280; Theoret. and Math. Phys., 1:2 (1969), 213–216
\Bibitem{Bas69}
\by A.~G.~Bashkirov
\paper Statistical theory of thermal diffusion of Brownian particles
\jour TMF
\yr 1969
\vol 1
\issue 2
\pages 275--280
\mathnet{http://mi.mathnet.ru/tmf4569}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 2
\pages 213--216
\crossref{https://doi.org/10.1007/BF01028047}
Linking options:
https://www.mathnet.ru/eng/tmf4569
https://www.mathnet.ru/eng/tmf/v1/i2/p275
This publication is cited in the following 12 articles:
M.V. Chepak-Gizbrekht, A.G. Knyazeva, “The influence of Soret and Dufour cross-effects on laser surface treatment of metal accompanied by solid-phase chemical reaction”, Solid State Ionics, 400 (2023), 116323
A. F. Krutov, V. E. Troitsky, “Instant form of Poincaré-invariant quantum mechanics and description of the structure of composite systems”, Phys. Part. Nuclei, 40:2 (2009), 136
A.V. Plyukhin, “Thermophoresis as persistent random walk”, Physics Letters A, 373:25 (2009), 2122
A. F. Krutov, V. E. Troitsky, “Relativistic instant-form approach to the structure of two-body composite systems: Nonzero spin”, Phys. Rev. C, 68:1 (2003)
A. F. Krutov, V. E. Troitsky, “Relativistic instant-form approach to the structure of two-body composite systems”, Phys. Rev. C, 65:4 (2002)
A. F. Krutov, V. E. Troitsky, “Asymptotic estimates of the pion charge form factor”, Theoret. and Math. Phys., 116:2 (1998), 907–913
E. V. Balandina, A. F. Krutov, V. E. Troitsky, “Relativistic model for composite two-quark systems”, Theoret. and Math. Phys., 103:1 (1995), 381–389
V.V. Anisovich, A.V. Sarantsev, V.E. Starodubsky, “Description of composite systems in the dispersion relation technique and the problem of contribution of non-nucleonic degrees of freedom to the EMC effect”, Nuclear Physics A, 468:3-4 (1987), 429
A. G. Bashkirov, “Nonequilibrium statistical mechanics of heterogeneous systems. III. Brownian motion of a large particle in an inhomogeneous fluid”, Theoret. and Math. Phys., 49:1 (1981), 940–943
A.I. Kirillov, Yu.M. Shirokov, V.E. Troitski, “Asymptotic behavior of the composite nucleon form factors”, Physics Letters B, 39:2 (1972), 249
M. L. Kharakhan, Yu. M. Shirokov, “Connection of field matrix elements with the phases of two-channel S-wave scattering”, Theoret. and Math. Phys., 5:1 (1970), 963–968
M. L. Kharakhan, Yu. M. Shirokov, “Jost function for two-channel scattering problem”, Theoret. and Math. Phys., 3:1 (1971), 374–378