Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1969, Volume 1, Number 2, Pages 251–274 (Mi tmf4568)  

This article is cited in 54 scientific papers (total in 54 papers)

Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism

N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset
References:
Abstract: This paper gives a rigorous mathematical description of the equilibrium state of the infinite system of particles on the basis of canonical ensemble theory. A proof is given of the existence and uniqueness of the limiting distribution functions and their analytical dependence on density. Results have been obtained by using methods developed by two of the authors in 1949, and based on the application of the theory of Banaeh spaces to the study of the equation forthe distribution functions.
Received: 26.03.1969
English version:
Theoretical and Mathematical Physics, 1969, Volume 1, Issue 2, Pages 194–212
DOI: https://doi.org/10.1007/BF01028046
Bibliographic databases:
Language: Russian
Citation: N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, “Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism”, TMF, 1:2 (1969), 251–274; Theoret. and Math. Phys., 1:2 (1969), 194–212
Citation in format AMSBIB
\Bibitem{BogPetKha69}
\by N.~N.~Bogolyubov, D.~Ya.~Petrina, B.~I.~Khatset
\paper Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism
\jour TMF
\yr 1969
\vol 1
\issue 2
\pages 251--274
\mathnet{http://mi.mathnet.ru/tmf4568}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=459460}
\transl
\jour Theoret. and Math. Phys.
\yr 1969
\vol 1
\issue 2
\pages 194--212
\crossref{https://doi.org/10.1007/BF01028046}
Linking options:
  • https://www.mathnet.ru/eng/tmf4568
  • https://www.mathnet.ru/eng/tmf/v1/i2/p251
  • This publication is cited in the following 54 articles:
    1. O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024  crossref
    2. Yu. Pogorelov, A. Rebenko, “Pro vіrіalnі rozkladi korelyatsіinikh funktsіi. Kanonіchnii ansambl”, Ukr. Mat. Zhurn., 75:5 (2023), 650  crossref
    3. Yu. Pogorelov, A. Rebenko, “On Virial Expansions of Correlation Functions. Canonical Ensemble”, Ukr Math J, 75:5 (2023), 744  crossref
    4. Sabine Jansen, “Revisiting Groeneveld's approach to the virial expansion”, Journal of Mathematical Physics, 62:2 (2021)  crossref
    5. A. L. Rebenko, “On the Relationships between Some Approaches to the Solution of Kirkwood–Salsburg Equations”, Ukr Math J, 73:3 (2021), 447  crossref
    6. T. C. Dorlas, A. L. Rebenko, B. Savoie, “Correlation of clusters: Partially truncated correlation functions and their decay”, Journal of Mathematical Physics, 61:3 (2020)  crossref
    7. A. L. Kuzemsky, “Nonequilibrium statistical operator method and generalized kinetic equations”, Theoret. and Math. Phys., 194:1 (2018), 30–56  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Ya. G. Sinai, Selecta: Volume II, 2010, 73  crossref
    9. V. I. Skrypnyk, “Solutions of the Kirkwood-Salsburg equation for particles with finite-range nonpairwise repulsion”, Ukr Math J, 60:8 (2008), 1329  crossref
    10. Martin Grothaus, Yuri G. Kondratiev, Michael Röckner, “N/V-limit for stochastic dynamics in continuous particle systems”, Probab. Theory Relat. Fields, 137:1-2 (2007), 121  crossref
    11. D. V. Anosov, “On the contribution of N. N. Bogolyubov to the theory of dynamical systems”, Russian Math. Surveys, 49:5 (1994), 1–18  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    12. N. N. Bogolyubov (Jr.), D. P. Sankovich, “N. N. Bogolyubov and statistical mechanics”, Russian Math. Surveys, 49:5 (1994), 19–49  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    13. Yu. A. Mitropolskii, D. Ya. Petrina, “On N. N. Bogolyubov's works in classical and quantum statistical mechanics”, Ukr Math J, 45:2 (1993), 171  crossref
    14. R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, Encyclopaedia of Mathematical Sciences, 2, Dynamical Systems II, 1989, 208  crossref
    15. V. A. Malyshev, Ya. G. Synai, “Some Works on Ergodic Theory and Mathematical Problems of Statistical Mechanics at the Department of Probability Theory of the Faculty of Mechanics and Mathematics at the MSU”, Theory Probab. Appl., 34:1 (1989), 186–193  mathnet  mathnet  crossref  isi
    16. A. L. Rebenko, “Mathematical foundations of equilibrium classical statistical mechanics of charged particles”, Russian Math. Surveys, 43:3 (1988), 65–116  mathnet  crossref  mathscinet  adsnasa  isi
    17. Ya. G. Sinai, N. I. Chernov, “Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls”, Russian Math. Surveys, 42:3 (1987), 181–207  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    18. I. G. Brankov, V. A. Zagrebnov, N. S. Tonchev, “Description of limit gibbs states for Curie–Weiss–Ising model”, Theoret. and Math. Phys., 66:1 (1986), 72–80  mathnet  crossref  mathscinet  isi
    19. R. Gelerak, “Equilibrium equations for the class of continuous systems with positive-definite two-body interaction”, Theoret. and Math. Phys., 67:2 (1986), 507–517  mathnet  crossref  mathscinet  isi
    20. A. V. Marchenko, L. A. Pastur, “Transmission of waves and particles through long random barriers”, Theoret. and Math. Phys., 68:3 (1986), 929–940  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:899
    Full-text PDF :364
    References:82
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025