Abstract:
The formalism of modular theory for $J$-symmetric weakly closed algebras in Pontryagin
space is introduced. Some propositions about the properties of the generalized $J$-Hilbert
algebras $\mathscr U$ and $\mathscr U'$ are proved. The main tool in the proofs is the definitizing operator
method.
Citation:
K. Yu. Dadashyan, S. S. Horuzhy, “Field algebras in quantum theory with indefinite metric. II. Formulation of a modular theory in Pontryagin space”, TMF, 62:1 (1985), 30–44; Theoret. and Math. Phys., 62:1 (1985), 21–30
This publication is cited in the following 7 articles:
E. V. Kissin, V. S. Shulman, “O predstavleniyakh grupp i algebr v prostranstvakh s indefinitnoi metrikoi”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 295–315
Victor S. Shulman, “Quasivectors and Tomita–Takesaki Theory for Operator Algebras on Π1-Spaces”, Rev. Math. Phys., 09:06 (1997), 749
S. N. Litvinov, “Bicyclic $WJ*$-algebras in Pontryagin space of type $\Pi_1$”, Funct. Anal. Appl., 26:3 (1992), 188–195
T. Ya. Azizov, S. S. Horuzhy, “Ghost number and ghost conjugation operators in the formalism of BRST quantization”, Theoret. and Math. Phys., 80:1 (1989), 671–679
V. A. Shtraus, “On a bicyclic self-adjoint algebra in a Krein space that is non-isomorphic to its own commutator-group”, Russian Math. Surveys, 43:4 (1988), 239–240
K. Yu. Dadashyan, S. S. Horuzhy, “Field algebras in quantum theory with indefinite metric. III. Spectrum of modular operator and Tomita's fundamental theorem”, Theoret. and Math. Phys., 70:2 (1987), 125–133
K. Yu. Dadashyan, S. S. Horuzhy, “Field algebras in quantum theory with indefinite metric. IV”, Theoret. and Math. Phys., 72:3 (1987), 921–929