Abstract:
The Schrodinger operator in R3 with a potential which is equal to the sum of the
Coulomb part and a fast decreasing part is considered. Trace formulas of zeroth order
are found for this operator. These formulas connect the determinant of a regularized
scattering operator at zero energy with the characteristics of the discrete spectrum.
Citation:
A. A. Kvitsinskiy, “Trace formula for Schrödinger operator with Coulomb potential in three-dimensional space”, TMF, 70:1 (1987), 104–114; Theoret. and Math. Phys., 70:1 (1987), 72–79
\Bibitem{Kvi87}
\by A.~A.~Kvitsinskiy
\paper Trace formula for Schr\"odinger operator with Coulomb potential in three-dimensional space
\jour TMF
\yr 1987
\vol 70
\issue 1
\pages 104--114
\mathnet{http://mi.mathnet.ru/tmf4499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=883787}
\zmath{https://zbmath.org/?q=an:0646.35018}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 70
\issue 1
\pages 72--79
\crossref{https://doi.org/10.1007/BF01017012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987J608800008}
Linking options:
https://www.mathnet.ru/eng/tmf4499
https://www.mathnet.ru/eng/tmf/v70/i1/p104
This publication is cited in the following 2 articles:
Alexei Rybkin, “On a trace formula of the Buslaev–Faddeev type for a long-range potential”, Journal of Mathematical Physics, 40:3 (1999), 1334
V V Kostrykin, A A Kvitsinsky, S P Merkuriev, “Potential scattering in constant magnetic field: Spectral asymptotics and Levinson formula”, J. Phys. A: Math. Gen., 28:12 (1995), 3493