Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 74, Number 3, Pages 399–411 (Mi tmf4485)  

This article is cited in 13 scientific papers (total in 13 papers)

The 1/n1/n expansion in quantum mechanics

V. M. Vainberg, V. D. Mur, V. S. Popov, A. V. Sergeev, A. V. Shcheblykin
References:
Abstract: The classical approximation (l=n1) for the energy ε(0) and the semiclassical expansion in problems of quantum mechanics are discussed. A recursive method is proposed for calculating the quantum corrections of arbitrary order to ε(0), this being valid for both bound and quasistationary states. The generalization of the method to states with an arbitrary number of nodes and the possibility of a more general choice of the parameter of the semiclassical expansion are considered. The method is illustrated by the example of the Yukawa and “funnel” potentials and for the Stark effect in the hydrogen atom. These examples demonstrate the rapid convergence of the 1/n expansion even for small quantum numbers.
Received: 15.07.1986
English version:
Theoretical and Mathematical Physics, 1988, Volume 74, Issue 3, Pages 269–278
DOI: https://doi.org/10.1007/BF01016620
Bibliographic databases:
Language: Russian
Citation: V. M. Vainberg, V. D. Mur, V. S. Popov, A. V. Sergeev, A. V. Shcheblykin, “The 1/n expansion in quantum mechanics”, TMF, 74:3 (1988), 399–411; Theoret. and Math. Phys., 74:3 (1988), 269–278
Citation in format AMSBIB
\Bibitem{VaiMurPop88}
\by V.~M.~Vainberg, V.~D.~Mur, V.~S.~Popov, A.~V.~Sergeev, A.~V.~Shcheblykin
\paper The~$1/n$ expansion in quantum mechanics
\jour TMF
\yr 1988
\vol 74
\issue 3
\pages 399--411
\mathnet{http://mi.mathnet.ru/tmf4485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=953300}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 74
\issue 3
\pages 269--278
\crossref{https://doi.org/10.1007/BF01016620}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172700007}
Linking options:
  • https://www.mathnet.ru/eng/tmf4485
  • https://www.mathnet.ru/eng/tmf/v74/i3/p399
  • This publication is cited in the following 13 articles:
    1. B. M. Karnakov, V. D. Mur, V. S. Popov, “Semiclassical approximation and 1/n expansion in quantum-mechanical problems”, Phys. Atom. Nuclei, 64:4 (2001), 670  crossref
    2. M. Dunn, D. K. Watson, “Large-dimension limit of higher-angular-momentum states of two-electron atoms”, Phys. Rev. A, 59:2 (1999), 1109  crossref
    3. Melchior O. Elout, David Z. Goodson, Carl D. Elliston, Shi-Wei Huang, Alexei V. Sergeev, Deborah K. Watson, “Improving the convergence and estimating the accuracy of summation approximants of 1/D expansions for Coulombic systems”, Journal of Mathematical Physics, 39:10 (1998), 5112  crossref
    4. Alexei V. Sergeev, David Z. Goodson, “Semiclassical self-consistent field perturbation theory for the hydrogen atom in a magnetic field”, Int. J. Quant. Chem., 69:2 (1998), 183  crossref
    5. Andrei A. Suvernev, David Z. Goodson, “Perturbation theory for coupled anharmonic oscillators”, The Journal of Chemical Physics, 106:7 (1997), 2681  crossref
    6. Timothy C. Germann, Sabre Kais, “Dimensional perturbation theory for Regge poles”, The Journal of Chemical Physics, 106:2 (1997), 599  crossref
    7. Andrei A. Suvernev, David Z. Goodson, “Dimensional perturbation theory for vibration–rotation spectra of linear triatomic molecules”, The Journal of Chemical Physics, 107:11 (1997), 4099  crossref
    8. Timothy C. Germann, “Use of dimension-dependent potentials for quasibound states”, The Journal of Chemical Physics, 104:13 (1996), 5100  crossref
    9. David Z. Goodson, New Methods in Quantum Theory, 1996, 71  crossref
    10. Martin Dunn, Timothy C. Germann, David Z. Goodson, Carol A. Traynor, John D. Morgan, Deborah K. Watson, Dudley R. Herschbach, “A linear algebraic method for exact computation of the coefficients of the 1/D expansion of the Schrödinger equation”, The Journal of Chemical Physics, 101:7 (1994), 5987  crossref
    11. Dudley R. Herschbach, Dimensional Scaling in Chemical Physics, 1993, 7  crossref
    12. S. S. Stepanov, R. S. Tutik, “Expansion with respect to  for bound states of the Schrödinger equation”, Theoret. and Math. Phys., 90:2 (1992), 139–145  mathnet  crossref  mathscinet  isi
    13. N. A. Kobylinsky, S. S. Stepanov, R. S. Tutik, “The ℏ-expansion for Regge trajectories”, Z. Phys. C - Particles and Fields, 47:3 (1990), 469  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :181
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025