Abstract:
The classical approximation (l=n−1→∞) for the energy ε(0) and
the semiclassical expansion in problems of quantum mechanics are discussed. A recursive method is proposed for calculating the quantum corrections of arbitrary order
to ε(0), this being valid for both bound and quasistationary states. The generalization of the method to states with an arbitrary number of nodes and the
possibility of a more general choice of the parameter of the
semiclassical expansion are considered. The method is illustrated
by the example of the Yukawa and “funnel” potentials and for the
Stark effect in the hydrogen atom. These examples demonstrate
the rapid convergence of the 1/n expansion even for small quantum numbers.
Citation:
V. M. Vainberg, V. D. Mur, V. S. Popov, A. V. Sergeev, A. V. Shcheblykin, “The 1/n expansion in quantum mechanics”, TMF, 74:3 (1988), 399–411; Theoret. and Math. Phys., 74:3 (1988), 269–278
This publication is cited in the following 13 articles:
B. M. Karnakov, V. D. Mur, V. S. Popov, “Semiclassical approximation and 1/n expansion in quantum-mechanical problems”, Phys. Atom. Nuclei, 64:4 (2001), 670
M. Dunn, D. K. Watson, “Large-dimension limit of higher-angular-momentum states of two-electron atoms”, Phys. Rev. A, 59:2 (1999), 1109
Melchior O. Elout, David Z. Goodson, Carl D. Elliston, Shi-Wei Huang, Alexei V. Sergeev, Deborah K. Watson, “Improving the convergence and estimating the accuracy of summation approximants of 1/D expansions for Coulombic systems”, Journal of Mathematical Physics, 39:10 (1998), 5112
Alexei V. Sergeev, David Z. Goodson, “Semiclassical self-consistent field perturbation theory for the hydrogen atom in a magnetic field”, Int. J. Quant. Chem., 69:2 (1998), 183
Andrei A. Suvernev, David Z. Goodson, “Perturbation theory for coupled anharmonic oscillators”, The Journal of Chemical Physics, 106:7 (1997), 2681
Timothy C. Germann, Sabre Kais, “Dimensional perturbation theory for Regge poles”, The Journal of Chemical Physics, 106:2 (1997), 599
Andrei A. Suvernev, David Z. Goodson, “Dimensional perturbation theory for vibration–rotation spectra of linear triatomic molecules”, The Journal of Chemical Physics, 107:11 (1997), 4099
Timothy C. Germann, “Use of dimension-dependent potentials for quasibound states”, The Journal of Chemical Physics, 104:13 (1996), 5100
David Z. Goodson, New Methods in Quantum Theory, 1996, 71
Martin Dunn, Timothy C. Germann, David Z. Goodson, Carol A. Traynor, John D. Morgan, Deborah K. Watson, Dudley R. Herschbach, “A linear algebraic method for exact computation of the coefficients of the 1/D expansion of the Schrödinger equation”, The Journal of Chemical Physics, 101:7 (1994), 5987
Dudley R. Herschbach, Dimensional Scaling in Chemical Physics, 1993, 7
S. S. Stepanov, R. S. Tutik, “Expansion with respect to ℏ for bound states of the Schrödinger equation”, Theoret. and Math. Phys., 90:2 (1992), 139–145
N. A. Kobylinsky, S. S. Stepanov, R. S. Tutik, “The ℏ-expansion for Regge trajectories”, Z. Phys. C - Particles and Fields, 47:3 (1990), 469