Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 8, Number 3, Pages 369–380 (Mi tmf4414)  

This article is cited in 11 scientific papers (total in 11 papers)

Kirkwood–Salzburg equations for the coefficient functions of the S matrix

D. Ya. Petrina, V. I. Skripnik
References:
Abstract: A system of Kirkwood–Salzburg type equations is obtained for the coefficient functions of the S matrix in the Euclidean region. The existence of solutions of the equations for the coefficient functions in the case of an infinite volume is proved for models of a real scalar field with bounded nonlinear Lagrangians. A study is made of the analogy between Euclidean quanturn field theory and statistical mechanics.
Received: 07.12.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 8, Issue 3, Pages 896–904
DOI: https://doi.org/10.1007/BF01029346
Language: Russian
Citation: D. Ya. Petrina, V. I. Skripnik, “Kirkwood–Salzburg equations for the coefficient functions of the S matrix”, TMF, 8:3 (1971), 369–380; Theoret. and Math. Phys., 8:3 (1971), 896–904
Citation in format AMSBIB
\Bibitem{PetSkr71}
\by D.~Ya.~Petrina, V.~I.~Skripnik
\paper Kirkwood--Salzburg equations for the coefficient functions of the $S$ matrix
\jour TMF
\yr 1971
\vol 8
\issue 3
\pages 369--380
\mathnet{http://mi.mathnet.ru/tmf4414}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 8
\issue 3
\pages 896--904
\crossref{https://doi.org/10.1007/BF01029346}
Linking options:
  • https://www.mathnet.ru/eng/tmf4414
  • https://www.mathnet.ru/eng/tmf/v8/i3/p369
  • This publication is cited in the following 11 articles:
    1. O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024  crossref
    2. Guskov V.A. Ivanov M.G. Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437  crossref  isi
    3. Ivanov M.G. Kalugin A.E. Ogarkova A.A. Ogarkov S.L., “On Functional Hamilton-Jacobi and Schrodinger Equations and Functional Renormalization Group”, Symmetry-Basel, 12:10 (2020), 1657  crossref  isi
    4. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    5. N.S. Gonchar, “Correlation functions of some continuous model systems and description of phase transitions”, Physics Reports, 172:5 (1989), 175  crossref
    6. A. L. Rebenko, “Mathematical foundations of equilibrium classical statistical mechanics of charged particles”, Russian Math. Surveys, 43:3 (1988), 65–116  mathnet  crossref  mathscinet  adsnasa  isi
    7. V. I. Skripnik, “Construction of transfer matrix for continuous one-dimensional many-component Gibbs systems with regular two-body interaction potential”, Theoret. and Math. Phys., 29:3 (1976), 1100–1108  mathnet  crossref  mathscinet
    8. S. S. Ivanov, D. Ya. Petrina, A. L. Rebenko, “$S$ matrix in constructive quantum field theory”, Theoret. and Math. Phys., 23:2 (1975), 422–434  mathnet  crossref  mathscinet
    9. Sergio Albeverio, Raphael Høegh-Krohn, “Homogeneous random fields and statistical mechanics”, Journal of Functional Analysis, 19:3 (1975), 242  crossref
    10. A. G. Basuev, “Convergence of the perturbation series for a nonlocal nonpolynomial theory $m^2/\Lambda$”, Theoret. and Math. Phys., 16:3 (1973), 835–842  mathnet  crossref  mathscinet
    11. Sergio Albeverio, Raphael Høegh-Krohn, “Uniqueness of the physical vacuum and the Wightman functions in the infinite volume limit for some non polynomial interactions”, Commun.Math. Phys., 30:3 (1973), 171  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :122
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025