Abstract:
The quasiclassical approximation is studied for a quantum particle in an external gravitational
field and the ambiguity of the quantum Hamiltonian is discussed. A particle in an externaI
gravitational field is quantized in accordance with the Feynman procedure.
Citation:
G. A. Vilkovyskii, “On the quantization of a particle in an external gravitational field”, TMF, 8:3 (1971), 359–368; Theoret. and Math. Phys., 8:3 (1971), 889–895
\Bibitem{Vil71}
\by G.~A.~Vilkovyskii
\paper On the quantization of a~particle in an external gravitational field
\jour TMF
\yr 1971
\vol 8
\issue 3
\pages 359--368
\mathnet{http://mi.mathnet.ru/tmf4413}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 8
\issue 3
\pages 889--895
\crossref{https://doi.org/10.1007/BF01029345}
Linking options:
https://www.mathnet.ru/eng/tmf4413
https://www.mathnet.ru/eng/tmf/v8/i3/p359
This publication is cited in the following 6 articles:
E. A. Tagirov, “Unfinished history and paradoxes of quantum potential. I. Non-relativistic origin, history and paradoxes”, Gravit. Cosmol., 19:1 (2013), 1
E. A. Tagirov, “Unfinished history and paradoxes of quantum potential. II. Relativistic point of view”, Gravit. Cosmol., 19:1 (2013), 10
V. G. Zima, S. A. Fedoruk, “Covariant quantization of $d=4$ Brink–Schwarz superparticle with using of Lorentz harmonics”, Theoret. and Math. Phys., 102:3 (1995), 305–322
Yu. S. Vladimirov, A. V. Karnaukhov, “Multidimensional theories and path integral for particles with spin 1/2”, Soviet Physics Journal, 30:3 (1987), 223
A. O. Barvinskii, V. N. Ponomarev, “Canonical quantization of gravity and quantum geometrodynamics”, Soviet Physics Journal, 29:3 (1986), 187
G. A. Vilkovyskii, “On the relation between quantum propagators and geometrical parallel transport”, Theoret. and Math. Phys., 16:1 (1973), 694–701