Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 126, Number 3, Pages 427–442
DOI: https://doi.org/10.4213/tmf439
(Mi tmf439)
 

This article is cited in 3 scientific papers (total in 3 papers)

Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields

V. R. Khalilov

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (258 kB) Citations (3)
References:
Abstract: The interaction between a massive neutral fermion with a static (spin) magnetic dipole moment $\mu$ and an external electromagnetic field is described by the Dirac–Pauli equation. Exact solutions of this equation are obtained along with the corresponding energy spectrum for an axially symmetric external magnetic field and for some centrally symmetric electric fields. It is shown that the spin?orbital interaction of a neutral fermion with a magnetic moment determines both the characteristic properties of the quantum states and the fermion energy spectrum. It is found that (1) the discrete energy spectrum of a neutral fermion depends on the projection of the fermion spin on a certain quantization axis, (2) the ground energy level of a fermion in these electric fields as well as the energy levels of all bound states with a fixed value of the quantum number characterizing the projection of the fermion spin in the electric field $E=er$ is degenerate and the degeneration order is countably infinite, and (3) the energy spectra of neutral fermions and antifermions with spin magnetic moments are symmetric in centrally symmetric fields. Bound states of a neutral fermion with a magnetic moment in an external electric field do exist even if the Dirac–Pauli equation does not explicitly contain the term with the fermion mass. In addition, in centrally symmetric electric fields, there exist a countably infinite set of pairs of isolated charge-conjugate zero-energy solutions of the Dirac–Pauli equation.
Received: 05.07.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 126, Issue 3, Pages 354–366
DOI: https://doi.org/10.1023/A:1010320001946
Bibliographic databases:
Language: Russian
Citation: V. R. Khalilov, “Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields”, TMF, 126:3 (2001), 427–442; Theoret. and Math. Phys., 126:3 (2001), 354–366
Citation in format AMSBIB
\Bibitem{Kha01}
\by V.~R.~Khalilov
\paper Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields
\jour TMF
\yr 2001
\vol 126
\issue 3
\pages 427--442
\mathnet{http://mi.mathnet.ru/tmf439}
\crossref{https://doi.org/10.4213/tmf439}
\zmath{https://zbmath.org/?q=an:0993.81012}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 3
\pages 354--366
\crossref{https://doi.org/10.1023/A:1010320001946}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170328400005}
Linking options:
  • https://www.mathnet.ru/eng/tmf439
  • https://doi.org/10.4213/tmf439
  • https://www.mathnet.ru/eng/tmf/v126/i3/p427
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :232
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025