Abstract:
The renormalization-group approach proposed by De Dominicis and Martin [1],
which makes it possible to derive Kolmogorov scaling in the theory of well-developed
turbulence, is generalized to the case of a system with an arbitrary passive
admixture.
Citation:
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, “Renormalization-group approach to the theory of turbulence. Inclusion of a passive admixture”, TMF, 58:1 (1984), 72–78; Theoret. and Math. Phys., 58:1 (1984), 47–51
\Bibitem{AdzVasGna84}
\by L.~Ts.~Adzhemyan, A.~N.~Vasil'ev, M.~Gnatich
\paper Renormalization-group approach to the theory of turbulence. Inclusion of a passive admixture
\jour TMF
\yr 1984
\vol 58
\issue 1
\pages 72--78
\mathnet{http://mi.mathnet.ru/tmf4294}
\zmath{https://zbmath.org/?q=an:0534.76064|0556.76042}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 1
\pages 47--51
\crossref{https://doi.org/10.1007/BF01031034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TA24500006}
Linking options:
https://www.mathnet.ru/eng/tmf4294
https://www.mathnet.ru/eng/tmf/v58/i1/p72
This publication is cited in the following 31 articles:
Nikolay V. Antonov, Michal Hnatič, Juha Honkonen, Polina I. Kakin, Tomáš Lučivjanský, Lukáš Mižišin, “Renormalized field theory for non-equilibrium systems”, Riv. Nuovo Cim., 2025
N V Antonov, N M Gulitskiy, P I Kakin, A S Romanchuk, “Random walk on a random surface: implications of non-perturbative concepts and dynamical emergence of Galilean symmetry”, J. Phys. A: Math. Theor., 58:11 (2025), 115001
Michal Hnatič, Tomáš Lučivjanský, Lukáš Mižišin, Yurii Molotkov, Andrei Ovsiannikov, “Renormalization Analysis of Magnetohydrodynamics: Two-Loop Approximation”, Universe, 10:6 (2024), 240
Antonov N.V., Babakin A.A., Kakin P.I., “Strongly Nonlinear Diffusion in Turbulent Environment: a Problem With Infinitely Many Couplings”, Universe, 8:2 (2022), 121
N. V. Antonov, N. M. Gulitskii, M. M. Kostenko, T. Lučivjanský, “Renormalization group analysis of models of advection of a vector admixture and a tracer field by a compressible turbulent flow”, Theoret. and Math. Phys., 200:3 (2019), 1294–1312
Michal Hnatič, Georgii Kalagov, Tomáš Lučivjanský, Peter Zalom, Springer Proceedings in Complexity, 11th Chaotic Modeling and Simulation International Conference, 2019, 95
Antonov N.V. Gulitskiy N.M. Kostenko M.M. Malyshev A.V., “Statistical Symmetry Restoration in Fully Developed Turbulence: Renormalization Group Analysis of Two Models”, Phys. Rev. E, 97:3 (2018), 033101
Jurcisinova E. Jurcisin M. Menkyna M., “Simultaneous Influence of Helicity and Compressibility on Anomalous Scaling of the Magnetic Field in the Kazantsev-Kraichnan Model”, Phys. Rev. E, 95:5 (2017), 053210
E. Jurčišinová, M. Jurčišin, “Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence”, Phys. Rev. E, 95:5 (2017)
Hnatic M. Zalom P., Phys. Rev. E, 94:5 (2016), 053113
Hnatic M. Honkonen J. Lucivjansky T., “Advanced Field-Theoretical Methods in Stochastic Dynamics and Theory of Developed Turbulence”, Acta Phys. Slovaca, 66:2-3 (2016), 69–265
Adzhemyan L.Ts. Antonov N.V. Gol'din P.B. Kompaniets M.V., “Anomalous Scaling of a Passive Vector Field in D Dimensions: Higher Order Structure Functions”, J. Phys. A-Math. Theor., 46:13 (2013), 135002
Gladyshev A.V. Jurcisinova E. Jurcisin M. Remecky R. Zalom P., “Anomalous Scaling of a Passive Scalar Field Near Two Dimensions”, Phys. Rev. E, 86:3, Part 2 (2012), 036302
E. Jurčišinová, M. Jurčišin, R. Remecky, “Influence of helicity on the turbulent Prandtl number: Two-loop approximation”, Theoret. and Math. Phys., 169:2 (2011), 1573–1582
E. Jurčišinová, M. Jurčišin, R. Remecký, “Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation”, Phys. Rev. E, 84:4 (2011)
E. Jurčišinová, M. Jurčišin, R. Remecký, “Comment on “Two-loop calculation of the turbulent Prandtl number””, Phys. Rev. E, 82:2 (2010)
Jurcisinova, E, “Anomalous scaling of a passive vector advected by the Navier–Stokes velocity field”, Journal of Physics A-Mathematical and Theoretical, 42:27 (2009), 275501
Jurcisinova, E, “Combined effects of small scale anisotropy and compressibility on anomalous scaling of a passive scalar”, International Journal of Modern Physics B, 22:21 (2008), 3589
Antonov, NV, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, Journal of Physics A-Mathematical and General, 39:25 (2006), 7825
Adzhemyan, LT, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation”, Physical Review E, 71:1 (2005), 016303