Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 1, Pages 61–71 (Mi tmf4293)  

This article is cited in 5 scientific papers (total in 5 papers)

Connection between the approximating Hamiltonian method and theta-function integration

E. D. Belokolos, D. Ya. Petrina
Full-text PDF (911 kB) Citations (5)
References:
Abstract: For the Fröhlich Hamiltonian describing the coupling of electrons to a countable set of phonon modes it is shown that the self-consistency equations which arise in the approximating Hamiltonian method can be solved by theta-function integration.
Received: 20.06.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 1, Pages 40–46
DOI: https://doi.org/10.1007/BF01031033
Bibliographic databases:
Language: Russian
Citation: E. D. Belokolos, D. Ya. Petrina, “Connection between the approximating Hamiltonian method and theta-function integration”, TMF, 58:1 (1984), 61–71; Theoret. and Math. Phys., 58:1 (1984), 40–46
Citation in format AMSBIB
\Bibitem{BelPet84}
\by E.~D.~Belokolos, D.~Ya.~Petrina
\paper Connection between the approximating Hamiltonian method and theta-function integration
\jour TMF
\yr 1984
\vol 58
\issue 1
\pages 61--71
\mathnet{http://mi.mathnet.ru/tmf4293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=740215}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 1
\pages 40--46
\crossref{https://doi.org/10.1007/BF01031033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TA24500005}
Linking options:
  • https://www.mathnet.ru/eng/tmf4293
  • https://www.mathnet.ru/eng/tmf/v58/i1/p61
  • This publication is cited in the following 5 articles:
    1. Brankov J.G., Tonchev N.S., “Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method”, Condensed Matter Physics, 14:1 (2011), 13003  crossref  isi
    2. D. Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics, 1995, 307  crossref
    3. J. V. Pulé, A. Verbeure, V. A. Zagrebnov, “Peierls-Fröhlich instability and Kohn anomaly”, J Stat Phys, 76:1-2 (1994), 159  crossref
    4. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49  mathnet  crossref  mathscinet  zmath  isi
    5. N. N. Bogolyubov (Jr.), I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, N. S. Tonchev, “Some classes of exactly soluble models of problems in quantum statistical mechanics: the method of the approximating Hamiltonian”, Russian Math. Surveys, 39:6 (1984), 1–50  mathnet  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :143
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025