Abstract:
A study is made of a dynamical system that interacts weakly with a thermal bath. The nonequilibrium statistical operator method is used to establish a Schrödinger-type equation with damping for this system. In the case of Bose statistics, a system of coupled nonlinear equations of Schrödinger and kinetic types is obtained.
Citation:
K. Valasek, D. N. Zubarev, A. L. Kuzemsky, “Schrödinger-type equation with damping for a dynamical system in a thermal bath”, TMF, 5:2 (1970), 281–292; Theoret. and Math. Phys., 5:2 (1970), 1150–1158
\Bibitem{ValZubKuz70}
\by K.~Valasek, D.~N.~Zubarev, A.~L.~Kuzemsky
\paper Schr\"odinger-type equation with damping for a~dynamical system in a~thermal bath
\jour TMF
\yr 1970
\vol 5
\issue 2
\pages 281--292
\mathnet{http://mi.mathnet.ru/tmf4208}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 5
\issue 2
\pages 1150--1158
\crossref{https://doi.org/10.1007/BF01036109}
Linking options:
https://www.mathnet.ru/eng/tmf4208
https://www.mathnet.ru/eng/tmf/v5/i2/p281
This publication is cited in the following 7 articles:
A. L. Kuzemsky, “Nonequilibrium statistical operator method and generalized kinetic equations”, Theoret. and Math. Phys., 194:1 (2018), 30–56
Vitalii Semin, Francesco Petruccione, “Nonequilibrium-thermodynamics approach to open quantum systems”, Phys. Rev. A, 90:5 (2014)
Clóves G. Rodrigues, Áurea R. Vasconcellos, Roberto Luzzi, “Evolution kinetics of nonequilibrium longitudinal-optical phonons generated by drifting electrons in III-nitrides: longitudinal-optical-phonon resonance”, Journal of Applied Physics, 108:3 (2010)
A. L. Kuzemsky, “Works by D. I. Blokhintsev and the development of quantum physics”, Phys. Part. Nuclei, 39:2 (2008), 137
Marcus V. Mesquita, �urea R. Vasconcellos, Roberto Luzzi, “Near-dissipationless coherent excitations in biosystems”, Int. J. Quantum Chem., 60:2 (1996), 689
Aurea R. Vasconcellos, Roberto Luzzi, “Vanishing thermal damping of Davydov's solitons”, Phys. Rev. E, 48:3 (1993), 2246
Roberto Luzzi, Aurea R. Vasconcellos, “On the Nonequilibrium Statistical Operator Method”, Fortschr. Phys., 38:11 (1990), 887