Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1970, Volume 5, Number 2, Pages 276–280 (Mi tmf4207)  

This article is cited in 9 scientific papers (total in 9 papers)

O(2,1)O(2,1) Algebra and the hydrogen atom

V. F. Dmitriev, Yu. B. Rumer
Full-text PDF (373 kB) Citations (9)
References:
Abstract: It is shown that both the nonrelativistic and the relativistic problems for the hydrogen atom can be formulated in terms of the generators of the noncompact algebra O(2,1). The possible values of the energy (the Balmer and Sommerfeld formulas, respectively), can be determined by an appropriate choice of the basis (tilt) for the generators in the algebra O(2,1).
Received: 16.03.1970
English version:
Theoretical and Mathematical Physics, 1970, Volume 5, Issue 2, Pages 1146–1149
DOI: https://doi.org/10.1007/BF01036108
Language: Russian
Citation: V. F. Dmitriev, Yu. B. Rumer, “O(2,1) Algebra and the hydrogen atom”, TMF, 5:2 (1970), 276–280; Theoret. and Math. Phys., 5:2 (1970), 1146–1149
Citation in format AMSBIB
\Bibitem{DmiRum70}
\by V.~F.~Dmitriev, Yu.~B.~Rumer
\paper $O(2,1)$~Algebra and the hydrogen atom
\jour TMF
\yr 1970
\vol 5
\issue 2
\pages 276--280
\mathnet{http://mi.mathnet.ru/tmf4207}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 5
\issue 2
\pages 1146--1149
\crossref{https://doi.org/10.1007/BF01036108}
Linking options:
  • https://www.mathnet.ru/eng/tmf4207
  • https://www.mathnet.ru/eng/tmf/v5/i2/p276
  • This publication is cited in the following 9 articles:
    1. Sami Ghazouani, “Algebraic approach to the Dunkl–Coulomb problem and Dunkl oscillator in arbitrary dimensions”, Anal.Math.Phys., 11:1 (2021)  crossref
    2. Sami Ghazouani, Sboui Insaf, “Superintegrability of the Dunkl–Coulomb problem in three-dimensions”, J. Phys. A: Math. Theor., 53:3 (2020), 035202  crossref
    3. Marisol Bermúdez-Montaña, Marisol Rodríguez-Arcos, Renato Lemus, José M. Arias, Joaquín Gómez-Camacho, Emilio Orgaz, “Algebraic DVR Approaches Applied to Describe the Stark Effect”, Symmetry, 12:10 (2020), 1719  crossref
    4. R. N. Lee, A. I. Milstein, I. S. Terekhov, “Relativistic Coulomb Green's function in d dimensions”, J. Exp. Theor. Phys., 113:2 (2011), 202  crossref
    5. Sh. M. Nagiyev, “Dynamical symmetry group of the relativistic Coulomb problem in the quasipotential approach”, Theoret. and Math. Phys., 80:1 (1989), 697–702  mathnet  crossref  mathscinet  isi
    6. I. V. Bogdanov, “Inverse problem of mechanics in momentum space”, Soviet Physics Journal, 28:1 (1985), 40  crossref
    7. A.I. Mil'shtein, V.M. Strakhovenko, “The O(2.1) algebra and the electron green function in a Coulomb field”, Physics Letters A, 90:9 (1982), 447  crossref
    8. J. Čížek, J. Paldus, “An algebraic approach to bound states of simple one‐electron systems”, Int J of Quantum Chemistry, 12:5 (1977), 875  crossref
    9. M Bednář, “Algebraic treatment of quantum-mechanical models with modified Coulomb potentials”, Annals of Physics, 75:2 (1973), 305  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :212
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025