Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 2, Pages 327–336
DOI: https://doi.org/10.4213/tmf401
(Mi tmf401)
 

This article is cited in 8 scientific papers (total in 8 papers)

Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval

B. Pelloni

University of Reading
Full-text PDF (233 kB) Citations (8)
References:
Abstract: We consider boundary value problems posed on an interval $[0,L]$ for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order $n$. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing $N$ conditions at $x=0$ and $n-N$ conditions at $x=L$, where $N$ depends on $n$ and on the sign of the highest-degree coefficient $n$ in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.
Keywords: boundary value problems, Riemann–Hilbert problem, spectral analysis.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 2, Pages 1598–1606
DOI: https://doi.org/10.1023/A:1021163230712
Bibliographic databases:
Language: Russian
Citation: B. Pelloni, “Well-Posed Boundary Value Problems for Integrable Evolution Equations on a Finite Interval”, TMF, 133:2 (2002), 327–336; Theoret. and Math. Phys., 133:2 (2002), 1598–1606
Citation in format AMSBIB
\Bibitem{Pel02}
\by B.~Pelloni
\paper Well-Posed Boundary Value Problems for Integrable Evolution Equations on a~Finite Interval
\jour TMF
\yr 2002
\vol 133
\issue 2
\pages 327--336
\mathnet{http://mi.mathnet.ru/tmf401}
\crossref{https://doi.org/10.4213/tmf401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001544}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 2
\pages 1598--1606
\crossref{https://doi.org/10.1023/A:1021163230712}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180061400017}
Linking options:
  • https://www.mathnet.ru/eng/tmf401
  • https://doi.org/10.4213/tmf401
  • https://www.mathnet.ru/eng/tmf/v133/i2/p327
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :179
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024