Abstract:
We describe how the Harry Dym equation fits into the the bi-Hamiltonian formalism for the Korteweg–de Vries equation and other soliton equations. This is achieved using a certain Poisson pencil constructed from two compatible Poisson structures. We obtain an analogue of the Kadomtsev–Petviashivili hierarchy whose reduction leads to the Harry Dym hierarchy. We call such a system the HD–KP hierarchy. We then construct an infinite system of ordinary differential equations (in infinitely many variables) that is equivalent to the HD–KP hierarchy. Its role is analogous to the role of the Central System in the Kadomtsev–Petviashivili hierarchy.
Keywords:bi-Hamiltonian formalism, Harry Dym equation, completely integrable systems.
Citation:
M. Pedroni, V. Sciacca, J. P. Zubelli, “The Bi-Hamiltonian Theory of the Harry Dym Equation”, TMF, 133:2 (2002), 311–326; Theoret. and Math. Phys., 133:2 (2002), 1585–1597
\Bibitem{PedSciZub02}
\by M.~Pedroni, V.~Sciacca, J.~P.~Zubelli
\paper The Bi-Hamiltonian Theory of the Harry Dym Equation
\jour TMF
\yr 2002
\vol 133
\issue 2
\pages 311--326
\mathnet{http://mi.mathnet.ru/tmf400}
\crossref{https://doi.org/10.4213/tmf400}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001543}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 2
\pages 1585--1597
\crossref{https://doi.org/10.1023/A:1021111213874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180061400016}
Linking options:
https://www.mathnet.ru/eng/tmf400
https://doi.org/10.4213/tmf400
https://www.mathnet.ru/eng/tmf/v133/i2/p311
This publication is cited in the following 9 articles:
Marta Dell'Atti, Pierandrea Vergallo, “Classification of degenerate non-homogeneous Hamiltonian operators”, Journal of Mathematical Physics, 64:3 (2023)
A. Yu. Konyaev, “Geometry of Inhomogeneous Poisson Brackets, Multicomponent Harry Dym Hierarchies, and Multicomponent Hunter–Saxton Equations”, Russ. J. Math. Phys., 29:4 (2022), 518
Li H., Xu J., “On the Double-Pole and Two-Soliton Solutions of the Harry Dym Equation”, Appl. Math. Lett., 104 (2020), 106276
Li Zh., “Algebro- Geometric Solutions of the Harry Dym Hierarchy”, Int. J. Nonlinear Sci. Numer. Simul., 18:2 (2017), 129–136
Harnad, J, “Multi-Hamiltonian structures for r-matrix systems”, Journal of Mathematical Physics, 49:6 (2008), 062903
Falqui, G, “The Sato Grassmannian and the CH Hierarchy”, Journal of Nonlinear Mathematical Physics, 15 (2008), 310
Fontanelli, L, “Bi-Hamiltonian aspects of a matrix Harry Dym hierarchy”, Journal of Mathematical Physics, 49:9 (2008), 092901
Casati, P, “On the local and nonlocal Camassa-Holm hierarchies”, Journal of Mathematical Physics, 46:4 (2005), 042704
Lorenzoni P, Pedroni M, “The Bi-Hamiltonian structures of the Camassa-Holm and Harry Dym equations”, International Mathematics Research Notices, 2004, no. 75, 4019–4029