Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 2, Pages 311–326
DOI: https://doi.org/10.4213/tmf400
(Mi tmf400)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Bi-Hamiltonian Theory of the Harry Dym Equation

M. Pedronia, V. Sciaccab, J. P. Zubellic

a University of Genova, Department of Mathematics
b Università degli Studi di Palermo
c Instituto Nacional de Matemática Pura e Aplicada
Full-text PDF (281 kB) Citations (9)
References:
Abstract: We describe how the Harry Dym equation fits into the the bi-Hamiltonian formalism for the Korteweg–de Vries equation and other soliton equations. This is achieved using a certain Poisson pencil constructed from two compatible Poisson structures. We obtain an analogue of the Kadomtsev–Petviashivili hierarchy whose reduction leads to the Harry Dym hierarchy. We call such a system the HD–KP hierarchy. We then construct an infinite system of ordinary differential equations (in infinitely many variables) that is equivalent to the HD–KP hierarchy. Its role is analogous to the role of the Central System in the Kadomtsev–Petviashivili hierarchy.
Keywords: bi-Hamiltonian formalism, Harry Dym equation, completely integrable systems.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 2, Pages 1585–1597
DOI: https://doi.org/10.1023/A:1021111213874
Bibliographic databases:
Language: Russian
Citation: M. Pedroni, V. Sciacca, J. P. Zubelli, “The Bi-Hamiltonian Theory of the Harry Dym Equation”, TMF, 133:2 (2002), 311–326; Theoret. and Math. Phys., 133:2 (2002), 1585–1597
Citation in format AMSBIB
\Bibitem{PedSciZub02}
\by M.~Pedroni, V.~Sciacca, J.~P.~Zubelli
\paper The Bi-Hamiltonian Theory of the Harry Dym Equation
\jour TMF
\yr 2002
\vol 133
\issue 2
\pages 311--326
\mathnet{http://mi.mathnet.ru/tmf400}
\crossref{https://doi.org/10.4213/tmf400}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001543}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 2
\pages 1585--1597
\crossref{https://doi.org/10.1023/A:1021111213874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180061400016}
Linking options:
  • https://www.mathnet.ru/eng/tmf400
  • https://doi.org/10.4213/tmf400
  • https://www.mathnet.ru/eng/tmf/v133/i2/p311
  • This publication is cited in the following 9 articles:
    1. Marta Dell'Atti, Pierandrea Vergallo, “Classification of degenerate non-homogeneous Hamiltonian operators”, Journal of Mathematical Physics, 64:3 (2023)  crossref
    2. A. Yu. Konyaev, “Geometry of Inhomogeneous Poisson Brackets, Multicomponent Harry Dym Hierarchies, and Multicomponent Hunter–Saxton Equations”, Russ. J. Math. Phys., 29:4 (2022), 518  crossref
    3. Li H., Xu J., “On the Double-Pole and Two-Soliton Solutions of the Harry Dym Equation”, Appl. Math. Lett., 104 (2020), 106276  crossref  mathscinet  isi
    4. Li Zh., “Algebro- Geometric Solutions of the Harry Dym Hierarchy”, Int. J. Nonlinear Sci. Numer. Simul., 18:2 (2017), 129–136  crossref  mathscinet  isi
    5. Harnad, J, “Multi-Hamiltonian structures for r-matrix systems”, Journal of Mathematical Physics, 49:6 (2008), 062903  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Falqui, G, “The Sato Grassmannian and the CH Hierarchy”, Journal of Nonlinear Mathematical Physics, 15 (2008), 310  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Fontanelli, L, “Bi-Hamiltonian aspects of a matrix Harry Dym hierarchy”, Journal of Mathematical Physics, 49:9 (2008), 092901  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Casati, P, “On the local and nonlocal Camassa-Holm hierarchies”, Journal of Mathematical Physics, 46:4 (2005), 042704  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Lorenzoni P, Pedroni M, “The Bi-Hamiltonian structures of the Camassa-Holm and Harry Dym equations”, International Mathematics Research Notices, 2004, no. 75, 4019–4029  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :237
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025