Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 2, Pages 211–217
DOI: https://doi.org/10.4213/tmf391
(Mi tmf391)
 

This article is cited in 13 scientific papers (total in 13 papers)

Integrable Systems and Rank-One Conditions for Rectangular Matrices

M. M. Gekhtmana, A. Kasmanb

a University of Notre Dame
b College of Charleston
References:
Abstract: We give a determinantal formula for tau functions of the KP hierarchy in terms of rectangular constant matrices AA, BB, and CC satisfying a rank-one condition. This result is shown to generalize and unify many previous results of different authors on constructions of tau functions for differential and difference integrable systems from square matrices satisfying rank-one conditions. In particular, its explicit special cases include Wilson's formula for tau functions of the rational KP solutions in terms of Calogero–Moser Lax matrices and our previous formula for the KP tau functions in terms of almost-intertwining matrices.
Keywords: KP hierarchies, solitions, Calogero–Moser matrices, rank-one conditions.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 2, Pages 1498–1503
DOI: https://doi.org/10.1023/A:1021142626169
Bibliographic databases:
Language: Russian
Citation: M. M. Gekhtman, A. Kasman, “Integrable Systems and Rank-One Conditions for Rectangular Matrices”, TMF, 133:2 (2002), 211–217; Theoret. and Math. Phys., 133:2 (2002), 1498–1503
Citation in format AMSBIB
\Bibitem{GekKas02}
\by M.~M.~Gekhtman, A.~Kasman
\paper Integrable Systems and Rank-One Conditions for Rectangular Matrices
\jour TMF
\yr 2002
\vol 133
\issue 2
\pages 211--217
\mathnet{http://mi.mathnet.ru/tmf391}
\crossref{https://doi.org/10.4213/tmf391}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001534}
\elib{https://elibrary.ru/item.asp?id=13866466}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 2
\pages 1498--1503
\crossref{https://doi.org/10.1023/A:1021142626169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180061400007}
Linking options:
  • https://www.mathnet.ru/eng/tmf391
  • https://doi.org/10.4213/tmf391
  • https://www.mathnet.ru/eng/tmf/v133/i2/p211
  • This publication is cited in the following 13 articles:
    1. Vekslerchik V.E., “Dark Solitons of the Gross-Neveu Model”, Prog. Theor. Exp. Phys., 2022:2 (2022), 023A01  crossref  mathscinet  isi  scopus
    2. Chuanzhong Li, “Finite-dimensional tau functions of the universal character hierarchy”, Theoret. and Math. Phys., 206:3 (2021), 321–334  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Harnad J., Balogh F., “Tau Functions and Their Applications”, Tau Functions and Their Applications, Cambridge Monographs on Mathematical Physics, Cambridge Univ Press, 2021, 1–521  crossref  mathscinet  isi
    4. V. E. Vekslerchik, “Solitons of Some Nonlinear Sigma-Like Models”, SIGMA, 16 (2020), 144, 13 pp.  mathnet  crossref
    5. Vekslerchik V.E., “Solitons of the (2+2)-Dimensional Toda Lattice”, J. Phys. A-Math. Theor., 52:4 (2019), 045202  crossref  mathscinet  isi  scopus
    6. Vekslerchik V.E., “Soliton Fay Identities: II. Bright Soliton Case”, J. Phys. A-Math. Theor., 48:44 (2015), 445204  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Vekslerchik V.E., “Soliton Fay Identities: i. Dark Soliton Case”, J. Phys. A-Math. Theor., 47:41 (2014), 415202  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Balogh F., Fonseca T., Harnad J., “Finite Dimensional Kadomtsev-Petviashvili Tau-Functions. i. Finite Grassmannians”, J. Math. Phys., 55:8 (2014), 083517  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Xu D.-d. Zhang D.-j. Zhao S.-l., “The Sylvester Equation and Integrable Equations: i. the Korteweg-de Vries System and sine-Gordon Equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406  crossref  mathscinet  isi  scopus  scopus
    10. Iliev, P, “Rational Ruijsenaars-Schneider hierarchy and bispectral difference operators”, Physica D-Nonlinear Phenomena, 229:2 (2007), 184  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    11. Gekhtman, M, “Tau-functions, Grassmannians and rank one conditions”, Journal of Computational and Applied Mathematics, 202:1 (2007), 80  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Gekhtman, M, “On KP generators and the geometry of the HBDE”, Journal of Geometry and Physics, 56:2 (2006), 282  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    13. Dimakis, A, “From nonassociativity to solutions of the KP hierarchy”, Czechoslovak Journal of Physics, 56:10–11 (2006), 1123  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :194
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025