Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 2, Pages 202–210
DOI: https://doi.org/10.4213/tmf390
(Mi tmf390)
 

This article is cited in 23 scientific papers (total in 23 papers)

Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed

P. G. Esteveza, C. Qub

a University of Salamanca
b Northwest University
References:
Abstract: We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.
Keywords: Lie symmetries, generalized symmetries, diffusion equations, nonlinear equations.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 2, Pages 1490–1497
DOI: https://doi.org/10.1023/A:1021190509331
Bibliographic databases:
Language: Russian
Citation: P. G. Estevez, C. Qu, “Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed”, TMF, 133:2 (2002), 202–210; Theoret. and Math. Phys., 133:2 (2002), 1490–1497
Citation in format AMSBIB
\Bibitem{EstQu02}
\by P.~G.~Estevez, C.~Qu
\paper Separation of Variables in a~Nonlinear Wave Equation with a~Variable Wave Speed
\jour TMF
\yr 2002
\vol 133
\issue 2
\pages 202--210
\mathnet{http://mi.mathnet.ru/tmf390}
\crossref{https://doi.org/10.4213/tmf390}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001533}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 2
\pages 1490--1497
\crossref{https://doi.org/10.1023/A:1021190509331}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180061400006}
Linking options:
  • https://www.mathnet.ru/eng/tmf390
  • https://doi.org/10.4213/tmf390
  • https://www.mathnet.ru/eng/tmf/v133/i2/p202
  • This publication is cited in the following 23 articles:
    1. Daniel Arrigo, Synthesis Lectures on Mathematics & Statistics, Analytical Methods for Solving Nonlinear Partial Differential Equations, 2022, 149  crossref
    2. Aksenov A.V., Polyanin A.D., “Methods For Constructing Complex Solutions of Nonlinear Pdes Using Simpler Solutions”, Mathematics, 9:4 (2021), 345  crossref  isi  scopus
    3. Zhurov I A., Polyanin A.D., “Symmetry Reductions and New Functional Separable Solutions of Nonlinear Klein-Gordon and Telegraph Type Equations”, J. Nonlinear Math. Phys., 27:2 (2020), 227–242  crossref  mathscinet  isi
    4. Polyanin A.D., “Functional Separation of Variables in Nonlinear Pdes: General Approach, New Solutions of Diffusion-Type Equations”, Mathematics, 8:1 (2020), 90  crossref  isi
    5. Polyanin A.D., Sorokin V.G., “New Exact Solutions of Nonlinear Wave Type Pdes With Delay”, Appl. Math. Lett., 108 (2020), 106512  crossref  mathscinet  isi
    6. Polyanin A.D., “Construction of Functional Separable Solutions in Implicit Form For Non-Linear Klein-Gordon Type Equations With Variable Coefficients”, Int. J. Non-Linear Mech., 114 (2019), 29–40  crossref  mathscinet  isi
    7. Polyanin A.D., “Comparison of the Effectiveness of Different Methods For Constructing Exact Solutions to Nonlinear Pdes. Generalizations and New Solutions”, Mathematics, 7:5 (2019), 386  crossref  isi  scopus
    8. Polyanin A.D., Zhurov A.I., “Functional Separable Solutions of Two Classes of Nonlinear Mathematical Physics Equations”, Dokl. Math., 99:3 (2019), 321–324  crossref  mathscinet  isi
    9. Daniel J. Arrigo, Synthesis Lectures on Mathematics & Statistics, Analytical Techniques for Solving Nonlinear Partial Differential Equations, 2019, 127  crossref
    10. Peng X., Shang Ya., Zheng X., “New Non-Travelling Wave Solutions of Calogero Equation”, Adv. Appl. Math. Mech., 8:6 (2016), 1036–1049  crossref  mathscinet  isi  elib  scopus
    11. Barannyk A.F., Barannyk T.A., Yuryk I.I., “Generalized Separation of Variables for Nonlinear Equation U(Tt) = F(U)U(XX) + Af `(U)U(X)(2)”, Rep. Math. Phys., 71:1 (2013), 1–13  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Huang D.-jiang, Zhou Sh., “Group properties of generalized quasi-linear wave equations”, Journal of Mathematical Analysis and Applications, 366:2 (2010), 460–472  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Wang, PZ, “Variable Separation for (1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives”, Communications in Theoretical Physics, 50:4 (2008), 797  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    14. Gou, M, “Functional separable solutions of nonlinear heat equations in non-Newtonian fluids”, Communications in Theoretical Physics, 49:2 (2008), 257  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Zhang, SL, “Functional variable separation for extended nonlinear elliptic equations”, Communications in Theoretical Physics, 48:3 (2007), 385  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    16. Hu, JY, “Functionally separable solutions to nonlinear wave equations by group foliation method”, Journal of Mathematical Analysis and Applications, 330:1 (2007), 298  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    17. Hu, JY, “Functional separable solutions to nonlinear diffusion equations by group foliation method”, Communications in Theoretical Physics, 47:2 (2007), 193  crossref  mathscinet  adsnasa  isi  scopus  scopus
    18. Zhang, SL, “The derivative-dependent functional variable separation for the evolution equations”, Chinese Physics, 15:12 (2006), 2765  crossref  mathscinet  adsnasa  isi  scopus  scopus
    19. Zhang, SL, “Variable separation and exact separable solutions for equations of type u(xt) = A(u, u(x))u(xx)+B(u, u(x))”, Communications in Theoretical Physics, 45:6 (2006), 969  crossref  mathscinet  adsnasa  isi  scopus  scopus
    20. Zhang, SL, “Functional variable separation for extended (1+2)-dimensional nonlinear wave equations”, Chinese Physics Letters, 22:11 (2005), 2731  crossref  mathscinet  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :211
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025