Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1980, Volume 44, Number 3, Pages 342–357 (Mi tmf3622)  

This article is cited in 66 scientific papers (total in 67 papers)

Quadratic bundle and nonlinear equations

V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish
References:
Abstract: A class of nonlinear evolution equations solvable by means of the inverse scattering problem method for the quadratic bundle
Lλψ=[i(1001)ddx+λ(0q(x)p(x)0)λ2]ψ(x,λ)=0
is described. It is shown that all the equations from this class are completely integrable hamiltonian systems; the corresponding “action-angle” variables are explicitly calculated. For q=εp, ε=±1 this class contains such physically interesting equations as the modified nonlinear Schrödinger equation (iqt+qxxiε(q2q)x=0), the massive Thirring model and others.
Received: 23.07.1979
English version:
Theoretical and Mathematical Physics, 1980, Volume 44, Issue 3, Pages 784–795
DOI: https://doi.org/10.1007/BF01029043
Bibliographic databases:
Language: Russian
Citation: V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish, “Quadratic bundle and nonlinear equations”, TMF, 44:3 (1980), 342–357; Theoret. and Math. Phys., 44:3 (1980), 784–795
Citation in format AMSBIB
\Bibitem{GerIvaKul80}
\by V.~S.~Gerdjikov, M.~I.~Ivanov, P.~P.~Kulish
\paper Quadratic bundle and nonlinear equations
\jour TMF
\yr 1980
\vol 44
\issue 3
\pages 342--357
\mathnet{http://mi.mathnet.ru/tmf3622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=596207}
\zmath{https://zbmath.org/?q=an:0439.35055}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 44
\issue 3
\pages 784--795
\crossref{https://doi.org/10.1007/BF01029043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LP32400005}
Linking options:
  • https://www.mathnet.ru/eng/tmf3622
  • https://www.mathnet.ru/eng/tmf/v44/i3/p342
  • This publication is cited in the following 67 articles:
    1. Bingshui Wang, Qiulan Zhao, Xinyue Li, “Long-time asymptotic behavior and bound state soliton solutions for a generalized derivative nonlinear Schrödinger equation”, Theoret. and Math. Phys., 222:1 (2025), 85–105  mathnet  crossref  crossref
    2. Shikun Cui, Zhen Wang, “Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation”, Nonlinearity, 37:10 (2024), 105015  crossref
    3. Qiulan Zhao, Xuejie Zhang, Xinyue Li, “Classification of solutions for the (2+1)-dimensional Fokas–Lenells equations based on bilinear method and Wronskian technique”, Nonlinear Dyn, 2024  crossref
    4. Zhi‐Jia Wu, Shou‐Fu Tian, “Whitham modulation theory and the classification of solutions to the Riemann problem of the Fokas–Lenells equation”, Stud Appl Math, 2024  crossref
    5. Da-Jun Zhang, “Bilinearization-reduction approach to integrable systems”, Acta Phys. Sin., 72:10 (2023), 100203  crossref
    6. Junchao Chen, Bao‐Feng Feng, “Tau‐function formulation for bright, dark soliton and breather solutions to the massive Thirring model”, Stud Appl Math, 150:1 (2023), 35  crossref
    7. Vladimir Stefanov Gerdjikov, Aleksander Aleksiev Stefanov, “Riemann–Hilbert Problems, Polynomial Lax Pairs, Integrable Equations and Their Soliton Solutions”, Symmetry, 15:10 (2023), 1933  crossref
    8. R. Ivanov, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2968, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2023, 020002  crossref
    9. V. S. Gerdjikov, A. O. Smirnov, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2522, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2022, 030004  crossref
    10. Tian Shou-Fu, “Riemann-Hilbert 问题 to a generalized derivative nonlinear Schrödinger equation: Long-time asymptotic behavior”, Sci. Sin.-Math., 52:5 (2022), 505  crossref
    11. Shu‐zhi Liu, Jing Wang, Da‐jun Zhang, “The Fokas–Lenells equations: Bilinear approach”, Stud Appl Math, 148:2 (2022), 651  crossref
    12. Yong Zhang, Huanhe Dong, Yong Fang, “The Multicomponent Higher-Order Chen–Lee–Liu System: The Riemann–Hilbert Problem and Its N-Soliton Solution”, Fractal Fract, 6:6 (2022), 327  crossref
    13. Rossen I. Ivanov, “NLS-type equations from quadratic pencil of Lax operators: Negative flows”, Chaos, Solitons & Fractals, 161 (2022), 112299  crossref
    14. Gerdjikov V.S. Ivanov R.I., “Multicomponent Fokas-Lenells Equations on Hermitian Symmetric Spaces”, Nonlinearity, 34:2 (2021), 939–963  crossref  isi
    15. Lashkin V.M., “Perturbation Theory For Solitons of the Fokas-Lenells Equation: Inverse Scattering Transform Approach”, Phys. Rev. E, 103:4 (2021), 042203  crossref  isi
    16. Shu-Zhi Liu, Hua Wu, “Solitons to the derivative nonlinear Schrödinger equation: Double Wronskians and reductions”, Mod. Phys. Lett. B, 35:24 (2021), 2150410  crossref
    17. Hua Wu, “Partial-limit solutions and rational solutions with parameter for the Fokas-Lenells equation”, Nonlinear Dyn, 106:3 (2021), 2497  crossref
    18. Yong Zhang, Huan-He Dong, “Multi-component Gerdjikov–Ivanov system and its Riemann–Hilbert problem under zero boundary conditions”, Nonlinear Analysis: Real World Applications, 60 (2021), 103279  crossref
    19. V. S. Gerdjikov, A. A. Stefanov, I. D. Iliev, G. P. Boyadjiev, A. O. Smirnov, V. B. Matveev, M. V. Pavlov, “Recursion operators and hierarchies of mKdV equations related to the Kac–Moody algebras D(1)4, D(2)4, and D(3)4”, Theoret. and Math. Phys., 204:3 (2020), 1110–1129  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    20. Samuel Fromm, “Admissible Boundary Values for the Gerdjikov–Ivanov Equation with Asymptotically Time-Periodic Boundary Data”, SIGMA, 16 (2020), 079, 15 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :169
    References:69
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025