1. Gerdjikov V.S. Smirnov A.O. Matveev V.B., “From Generalized Fourier Transforms to Spectral Curves For the Manakov Hierarchy. i. Generalized Fourier Transforms”, Eur. Phys. J. Plus, 135:8 (2020), 659  crossref  isi
  2. Smirnov A.O. Gerdjikov V.S. Matveev V.B., “From Generalized Fourier Transforms to Spectral Curves For the Manakov Hierarchy. II. Spectral Curves For the Manakov Hierarchy”, Eur. Phys. J. Plus, 135:7 (2020), 561  crossref  isi
  3. Wu-Ming Liu, Emmanuel Kengne, Schrödinger Equations in Nonlinear Systems, 2019, 1  crossref
  4. Kitanine N. Nepomechie R.I. Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201  crossref  isi
  5. Chen J., “Quasi-Periodic Solutions to the Mixed Kaup-Newell Hierarchy”, Z. Naturfors. Sect. A-J. Phys. Sci., 73:7 (2018), 579–593  crossref  isi
  6. V. S. Gerdjikov, “Kulish–Sklyanin-type models: Integrability and reductions”, Theoret. and Math. Phys., 192:2 (2017), 1097–1114  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  7. Gerdjikov V.S. Grahovski G.G. Ivanov R.I., “On Integrable Wave Interactions and Lax pairs on Symmetric Spaces”, Wave Motion, 71:SI (2017), 53–70  crossref  isi
  8. Wen-Xiu Ma, Yuan Zhou, “Reduced D-Kaup–Newell soliton hierarchies from sl(2,ℝ) and so(3,ℝ)”, Int. J. Geom. Methods Mod. Phys., 13:07 (2016), 1650105  crossref
  9. “Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19  mathnet  mathscinet
  10. Jian Xu, Engui Fan, Yong Chen, “Long-time Asymptotic for the Derivative Nonlinear Schrödinger Equation with Step-like Initial Value”, Math Phys Anal Geom, 16:3 (2013), 253  crossref
  11. G S França, J F Gomes, A H Zimerman, “The algebraic structure behind the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 46:30 (2013), 305201  crossref
  12. D. Laveder, T. Passot, P. L. Sulem, “Phase slips and dissipation of Alfvenic intermediate shocks and solitons”, Physics of Plasmas, 19:9 (2012)  crossref
  13. Tsuchida T., “Systematic Method of Generating New Integrable Systems via Inverse Miura Maps”, J. Math. Phys., 52:5 (2011), 053503  crossref  isi
  14. G. Sánchez-Arriaga, D. Laveder, T. Passot, P. L. Sulem, “Quasicollapse of oblique solitons of the weakly dissipative derivative nonlinear Schrödinger equation”, Phys. Rev. E, 82:1 (2010)  crossref
  15. Takayuki Tsuchida, “New reductions of integrable matrix partial differential equations: Sp(m)-invariant systems”, Journal of Mathematical Physics, 51:5 (2010)  crossref
  16. Tao Xu, Bo Tian, Cheng Zhang, Xiang-Hua Meng, Xing Lü, “Alfvén solitons in the coupled derivative nonlinear Schrödinger system with symbolic computation”, J. Phys. A: Math. Theor., 42:41 (2009), 415201  crossref
  17. Ustinov, NV, “Infinitesimal symmetries and conservation laws of the DNLSE hierarchy and the Noether's theorem”, European Physical Journal B, 58:3 (2007), 311  crossref  isi
  18. Gerdjikov, VS, “Adiabatic N-soliton interactions of Bose–Einstein condensates in external potentials”, Physical Review E, 73:4 (2006), 046606  crossref  mathscinet  adsnasa  isi
  19. V. M. Lashkin, “Alfvén soliton and emitted radiation in the presence of perturbations”, Phys. Rev. E, 74:1 (2006)  crossref
  20. V. S. Gerdjikov, B. B. Baizakov, M. Salerno, “Modeling Adiabatic $N$-Soliton Interactions and Perturbations”, Theoret. and Math. Phys., 144:2 (2005), 1138–1146  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
Previous
1
2
3
4
Next