Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 19, Number 2, Pages 252–268 (Mi tmf3583)  

This article is cited in 13 scientific papers (total in 13 papers)

Single-particle Green's function in an anisotropic Heisenberg model. III. Spectrum and damping for anisotropy of the easy plane type

Yu. G. Rudoi, Yu. A. Tserkovnikov
References:
Abstract: A study is made of the matrix Green's function constructed from Pauli operators similar to the one used in the theory of superfluidtty and superconductivity. The poles of the dynamical susceptibility and a renormalized spectrum of Bogolyubov-type magnons are found. General expressions are obtained for the normal and anomalous stngle-particle correlation functions and also an equation for the magnetization that generalizes Tyablikov theory. A canonical uv-transformation is applied to the quasi-Bose operators in order to calculate the contribution of the integral term of second order to the energy shift and damping of magnons at low temperatures.
Received: 25.04.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 19, Issue 2, Pages 491–503
DOI: https://doi.org/10.1007/BF01035950
Document Type: Article
Language: Russian
Citation: Yu. G. Rudoi, Yu. A. Tserkovnikov, “Single-particle Green's function in an anisotropic Heisenberg model. III. Spectrum and damping for anisotropy of the easy plane type”, TMF, 19:2 (1974), 252–268; Theoret. and Math. Phys., 19:2 (1974), 491–503
Citation in format AMSBIB
\Bibitem{RudTse74}
\by Yu.~G.~Rudoi, Yu.~A.~Tserkovnikov
\paper Single-particle Green's function in an~anisotropic Heisenberg model. III.~Spectrum and damping for anisotropy of the easy plane type
\jour TMF
\yr 1974
\vol 19
\issue 2
\pages 252--268
\mathnet{http://mi.mathnet.ru/tmf3583}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 19
\issue 2
\pages 491--503
\crossref{https://doi.org/10.1007/BF01035950}
Linking options:
  • https://www.mathnet.ru/eng/tmf3583
  • https://www.mathnet.ru/eng/tmf/v19/i2/p252
    Cycle of papers
    This publication is cited in the following 13 articles:
    1. Joren Vanherck, Bart Sorée, Wim Magnus, “Anisotropic bulk and planar Heisenberg ferromagnets in uniform, arbitrarily oriented magnetic fields”, J. Phys.: Condens. Matter, 30:27 (2018), 275801  crossref
    2. Yu. G. Rudoy, “The Bogoliubov–Tyablikov Green's function method in the quantum theory of magnetism”, Theoret. and Math. Phys., 168:3 (2011), 1318–1329  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Daisuke Yamamoto, Synge Todo, Susumu Kurihara, “Green's function theory for spin-12ferromagnets with an easy-plane exchange anisotropy”, Phys. Rev. B, 78:2 (2008)  crossref
    4. V. V. Val'kov, “Unitary transformations of the group U(N) and diagonalization of multilevel Hamiltonians”, Theoret. and Math. Phys., 76:1 (1988), 766–772  mathnet  crossref  mathscinet  isi
    5. M.I. KAGANOV, A.V. CHUBUKOV, Modern Problems in Condensed Matter Sciences, 22, Spin Waves and Magnetic Excitations, 1988, 1  crossref
    6. V. V. Val'kov, S. G. Ovchinnikov, “Hubbard operators and spin-wave theory of Heisenberg magnets with arbitrary spin”, Theoret. and Math. Phys., 50:3 (1982), 306–313  mathnet  crossref  mathscinet  isi
    7. Yu. G. Rudoi, “Tensor of the inhomogeneous dynamic susceptibility of an anisotropic Heisenberg ferromagnet and Bogolyubov inequalities. I. Single-particle matrix Green's function and transverse components of the susceptibility tensor”, Theoret. and Math. Phys., 38:1 (1979), 68–78  mathnet  crossref  mathscinet
    8. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. IV. Model of easy plane type with allowance for Dzyaloshinskii interaction”, Theoret. and Math. Phys., 34:2 (1978), 137–147  mathnet  crossref
    9. E. V. Kuz'min, S. G. Ovchinnikov, “Electron correlations in a Hubbard antiferromagnetic semiconductor. Weak coupling”, Theoret. and Math. Phys., 31:3 (1977), 523–531  mathnet  crossref
    10. R. R. Nigmatullin, “Exact structure of equations for the longitudinal correlation function in the anisotropic Heisenberg ferromagnet”, Theoret. and Math. Phys., 28:3 (1976), 869–877  mathnet  crossref
    11. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. II. Paramagnetic phase in the generalized Hartree–Fock approximation”, Theoret. and Math. Phys., 24:3 (1975), 912–917  mathnet  crossref
    12. Yu. G. Rudoi, Yu. A. Tserkovnikov, “One-particle green s function in the anisotropic Heisenberg model”, Theoret. and Math. Phys., 25:2 (1975), 1073–1084  mathnet  crossref
    13. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet I. Antiferromagnetic phase in the generalized Hartree-Fock approximation”, Theoret. and Math. Phys., 21:1 (1974), 990–1002  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:458
    Full-text PDF :156
    References:62
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025