Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 18, Number 1, Pages 90–107 (Mi tmf3521)  

This article is cited in 13 scientific papers (total in 13 papers)

Sevaration of “normal” and “superfluid” mctions in the Schrödinger equation by means of the method of displacements and collective variables

I. A. Vakarchuk, I. R. Yukhnovskii
References:
Abstract: By the application of a displacement transformation, the wave function of a system of interacting bosons is represented by the product of the ground-state wave function and a function that describes the presence of excitations in the system. The equations obtained for these functions are solved in the representation of collective variables by a special method of perturbation theory that does not contain divergences. An investigation is made of the resulting expressions for the wave functions, ground-state energy, energy spectrum, and damping of collective excitations.
Received: 09.11.1972
English version:
Theoretical and Mathematical Physics, 1974, Volume 18, Issue 1, Pages 63–75
DOI: https://doi.org/10.1007/BF01036928
Language: Russian
Citation: I. A. Vakarchuk, I. R. Yukhnovskii, “Sevaration of “normal” and “superfluid” mctions in the Schrödinger equation by means of the method of displacements and collective variables”, TMF, 18:1 (1974), 90–107; Theoret. and Math. Phys., 18:1 (1974), 63–75
Citation in format AMSBIB
\Bibitem{VakYuk74}
\by I.~A.~Vakarchuk, I.~R.~Yukhnovskii
\paper Sevaration of ``normal'' and ``superfluid'' mctions in the Schr\"odinger equation by means of the method of displacements and collective variables
\jour TMF
\yr 1974
\vol 18
\issue 1
\pages 90--107
\mathnet{http://mi.mathnet.ru/tmf3521}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 1
\pages 63--75
\crossref{https://doi.org/10.1007/BF01036928}
Linking options:
  • https://www.mathnet.ru/eng/tmf3521
  • https://www.mathnet.ru/eng/tmf/v18/i1/p90
  • This publication is cited in the following 13 articles:
    1. Vakarchuk I.O., Pastukhov V.S., Prytula R.O., “Theory of Structure and Thermodynamic Function of Liquid He-4 (Review Article)”, Low Temp. Phys., 39:9 (2013), 741–751  crossref  isi
    2. P. Gulshani, “Derivation of microscopic uni-axial unified adiabatic Bohr–Mottelson rotational model”, Nuclear Physics A, 832:1-2 (2010), 18  crossref
    3. I. A. Vakarchuk, “Density matrices of superfluid helium-4. I”, Theoret. and Math. Phys., 80:3 (1989), 983–991  mathnet  crossref  isi
    4. I. A. Vakarchuk, P. A. Glushak, “Free energy of a many-boson system at low temperatures”, Theoret. and Math. Phys., 75:1 (1988), 399–408  mathnet  crossref  isi
    5. G. O. Balabanyan, “Construction of theory of a binary mixture of nonideal Bose gases (or liquids) by the method of collective variables I. Wave function and ground-state energy, excitation spectrum, correlation functions, thermodynamics of the system at T=0”, Theoret. and Math. Phys., 66:1 (1986), 81–97  mathnet  crossref  mathscinet  isi
    6. V. A. Onischuk, “Collective variables. Correlation functions on Gaussian functionals”, Theoret. and Math. Phys., 51:3 (1982), 582–593  mathnet  crossref  mathscinet  isi
    7. V. Ya. Krivnov, A. A. Ovchinnikov, “Ground-state wave function of a one-dimensional weakly nonideal lattice Fermi gas”, Theoret. and Math. Phys., 47:1 (1981), 339–345  mathnet  crossref  mathscinet  isi
    8. I. A. Vakarchuk, I. R. Yukhnovskii, “Microscopic theory of the energy spectrum of liquid HeII”, Theoret. and Math. Phys., 42:1 (1980), 73–80  mathnet  crossref  isi
    9. I. A. Vakarchuk, I. R. Yukhnovskii, “Self-consistent description of long-range and short-range correlations in the theory of liquid He4. I”, Theoret. and Math. Phys., 40:1 (1979), 626–633  mathnet  crossref  isi
    10. M. V. Vavrukh, “Mean energy and binary distribution function in the ground state of Bose systems”, Theoret. and Math. Phys., 35:2 (1978), 449–455  mathnet  crossref
    11. I. A. Vakarchuk, “Irreducible cluster expansion for the logarithm of the s-particle density matrix of a many-boson system”, Theoret. and Math. Phys., 32:2 (1977), 720–730  mathnet  crossref  mathscinet
    12. Yu. A. Tserkovnikov, “Calculation of the correlation functions of a nonideal Bose gas by the method of collective variables”, Theoret. and Math. Phys., 26:1 (1976), 50–61  mathnet  crossref
    13. I. A. Vakarchuk, “Density matrices of a many-Boson system at low temperatures”, Theoret. and Math. Phys., 23:2 (1975), 496–505  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :128
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025