Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 18, Number 1, Pages 78–89 (Mi tmf3520)  

This article is cited in 7 scientific papers (total in 7 papers)

Diagram method of constructing solutions of Bogolyubov's chain of equations

D. N. Zubarev, M. Yu. Novikov
References:
Abstract: A diagram method is developed for constructing solutions of Bogoiyubov's chain of equations; the method enables one to investigate both spatially homogeneous and spatially inhomogeneous nonequilibrium states of classical systems. A general kinetic equation is derived for the oneparticle distribution function.
Received: 21.02.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 18, Issue 1, Pages 55–62
DOI: https://doi.org/10.1007/BF01036927
Bibliographic databases:
Language: Russian
Citation: D. N. Zubarev, M. Yu. Novikov, “Diagram method of constructing solutions of Bogolyubov's chain of equations”, TMF, 18:1 (1974), 78–89; Theoret. and Math. Phys., 18:1 (1974), 55–62
Citation in format AMSBIB
\Bibitem{ZubNov74}
\by D.~N.~Zubarev, M.~Yu.~Novikov
\paper Diagram method of constructing solutions of Bogolyubov's chain of equations
\jour TMF
\yr 1974
\vol 18
\issue 1
\pages 78--89
\mathnet{http://mi.mathnet.ru/tmf3520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468964}
\zmath{https://zbmath.org/?q=an:0309.65051}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 1
\pages 55--62
\crossref{https://doi.org/10.1007/BF01036927}
Linking options:
  • https://www.mathnet.ru/eng/tmf3520
  • https://www.mathnet.ru/eng/tmf/v18/i1/p78
  • This publication is cited in the following 7 articles:
    1. Mitsusada M. Sano, “Zero-Collision Term Problem in Kinetic Theory of One-Dimensional Systems”, J. Phys. Soc. Jpn., 81:2 (2012), 024008  crossref
    2. G. O. Balabanyan, “Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. I”, Theoret. and Math. Phys., 88:2 (1991), 833–848  mathnet  crossref  mathscinet  isi
    3. G. O. Balabanyan, “Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II”, Theoret. and Math. Phys., 89:1 (1991), 1106–1119  mathnet  crossref  mathscinet  isi
    4. B. M. Gurevich, V. I. Oseledets, “Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles”, J. Soviet Math., 13:4 (1980), 455–478  mathnet  mathnet  crossref
    5. S. I. Kantorovich, “Inclusion of interparticle correlations in the collision integral by means of continuous integration. II”, Soviet Physics Journal, 19:4 (1976), 499  crossref
    6. R. M. Yul'met'yev, “Bogolyubov's abridged description of equilibrium systems and derivation of an equation for the radial distribution function in a liquid”, Theoret. and Math. Phys., 25:2 (1975), 1100–1108  mathnet  crossref  mathscinet
    7. D. N. Zubarev, M. Yu. Novikov, “Renormalized kinetic equations for a system with weak interaction and for a low-density gas”, Theoret. and Math. Phys., 19:2 (1974), 480–490  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :158
    References:46
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025