Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1980, Volume 44, Number 1, Pages 93–102 (Mi tmf3486)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonequilibrium statistical mechanics of heterogeneous systems. II. Brownian motion of a large particle

A. G. Bashkirov
References:
Abstract: On the basis of the Liouville equation for the distribution function of all the moleculi of the system (the liquid and the solid particle) by the projection operator method, the Fokker–Planck equation is derived for the one-particle distribution function of the coordinate and momentum of the centre of mass of the brownian particle. Hydrodynamical perturbation of the liquid by the moving particle is taken into account. Formal expression of the type of the Green–Kubo formula is obtained for the resistance coefficient of the brownian particle in terms of the correlation function of fluctuations of the momentum flux tensor in viscous liquid. It is shown that in the case of a viscous incompressible liquid the Stokes formula follows from this expression.
Received: 29.05.1979
English version:
Theoretical and Mathematical Physics, 1980, Volume 44, Issue 1, Pages 623–629
DOI: https://doi.org/10.1007/BF01038013
Bibliographic databases:
Language: Russian
Citation: A. G. Bashkirov, “Nonequilibrium statistical mechanics of heterogeneous systems. II. Brownian motion of a large particle”, TMF, 44:1 (1980), 93–102; Theoret. and Math. Phys., 44:1 (1980), 623–629
Citation in format AMSBIB
\Bibitem{Bas80}
\by A.~G.~Bashkirov
\paper Nonequilibrium statistical mechanics of~heterogeneous systems.
II.~Brownian motion of a~large particle
\jour TMF
\yr 1980
\vol 44
\issue 1
\pages 93--102
\mathnet{http://mi.mathnet.ru/tmf3486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=586186}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 44
\issue 1
\pages 623--629
\crossref{https://doi.org/10.1007/BF01038013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LC84200008}
Linking options:
  • https://www.mathnet.ru/eng/tmf3486
  • https://www.mathnet.ru/eng/tmf/v44/i1/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :148
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024