Processing math: 50%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 29, Number 2, Pages 213–220 (Mi tmf3452)  

This article is cited in 20 scientific papers (total in 20 papers)

Application of the inverse scattering method to the equation σxt=eσ

V. A. Andreev
References:
Abstract: It is shown that the equation σxt=eσ, which arises in many branches of physics and mathematics, can be exactly solved by means of the inverse scattering problem. Here, N-soliton solutions are constructed. These solutions describe one movIng soliton and N1 fixed solitons. The phase shift of the moving soliton resulting from scattering on fixed solitons is found. Conservation laws are constructed. The method used in the paper differs somewhat from the ordinary method of the inverse scattering problem.
Received: 18.02.1976
English version:
Theoretical and Mathematical Physics, 1976, Volume 29, Issue 2, Pages 1027–1032
DOI: https://doi.org/10.1007/BF01108506
Bibliographic databases:
Language: Russian
Citation: V. A. Andreev, “Application of the inverse scattering method to the equation σxt=eσ”, TMF, 29:2 (1976), 213–220; Theoret. and Math. Phys., 29:2 (1976), 1027–1032
Citation in format AMSBIB
\Bibitem{And76}
\by V.~A.~Andreev
\paper Application of the inverse scattering method to the equation $\sigma_{xt}=e^\sigma$
\jour TMF
\yr 1976
\vol 29
\issue 2
\pages 213--220
\mathnet{http://mi.mathnet.ru/tmf3452}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=447845}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 2
\pages 1027--1032
\crossref{https://doi.org/10.1007/BF01108506}
Linking options:
  • https://www.mathnet.ru/eng/tmf3452
  • https://www.mathnet.ru/eng/tmf/v29/i2/p213
  • This publication is cited in the following 20 articles:
    1. Lei Cao, Shouxin Chen, “An existence theorem for generalized Abelian Higgs equations and its application”, Proc. R. Soc. A., 480:2298 (2024)  crossref
    2. Lei Cao, Shouxin Chen, Yisong Yang, “Domain Wall Solitons Arising in Classical Gauge Field Theories”, Commun. Math. Phys., 369:1 (2019), 317  crossref
    3. V. A. Andreev, “System of equations for stimulated combination scattering and the related double periodic A(1)n Toda chains”, Theoret. and Math. Phys., 156:1 (2008), 1020–1027  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. O.K. Pashaev, Jyh-Hao Lee, “Chern–Simons solitons in quantum potential”, Chaos, Solitons & Fractals, 11:14 (2000), 2193  crossref
    5. V. M. Eleonsky, V. G. Korolev, “Isospectral deformation of quantum potentials and the Liouville equation”, Phys. Rev. A, 55:4 (1997), 2580  crossref
    6. B. Fuchssteiner, V. V. Tsegel'nik, “Analytical properties of solutions to a system of nonlinear partial differential equations”, Theoret. and Math. Phys., 105:2 (1995), 1354–1358  mathnet  crossref  mathscinet  zmath  isi
    7. V. A. Andreev, M. V. Burova, “Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations”, Theoret. and Math. Phys., 85:3 (1990), 1275–1283  mathnet  crossref  mathscinet  zmath  isi
    8. F. Calogero, A. Degasperis, Order and Chaos in Nonlinear Physical Systems, 1988, 63  crossref
    9. Antoine Bredimas, “N-dimensional general solutions of the Liouville type equation with applications”, Physics Letters A, 122:6-7 (1987), 283  crossref
    10. G P Jorijadze, A K Pogrebkov, M C Polivanov, S V Talalov, “Liouville field theory: IST and Poisson bracket structure”, J. Phys. A: Math. Gen., 19:1 (1986), 121  crossref
    11. L. Bos, R.J. Torrence, “Comment on the Liouville equation and multisolitons”, Physics Letters A, 111:3 (1985), 95  crossref
    12. K. Kobayashi, “Nonlinear Klein-Gordon Equations for the Motion of the String”, Progress of Theoretical Physics, 71:2 (1984), 424  crossref
    13. E. D'Hoker, R. Jackiw, “Classical and quantal Liouville field theory”, Phys. Rev. D, 26:12 (1982), 3517  crossref
    14. Studies in Mathematics and Its Applications, 13, Spectral Transform and Solitons - Tools to Solve and Investigate Nonlinear Evolution Equations, 1982, 488  crossref
    15. S.A. Bulgadaev, “Two-dimensional integrable field theories connected with simple lie algebras”, Physics Letters B, 96:1-2 (1980), 151  crossref
    16. B. M. Barbashov, V. V. Nesterenko, “Differential Geometry and Nonlinear Field Models”, Fortschr. Phys., 28:8-9 (1980), 427  crossref
    17. B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Solitons in some geometrical field theories”, Theoret. and Math. Phys., 40:1 (1979), 572–581  mathnet  crossref  mathscinet  isi
    18. G. P. Jorjadze, A. K. Pogrebkov, M. K. Polivanov, “Singular solutions of the equation \Box\varphi+(m^2/2)\exp\varphi=0 and dynamics of singularities”, Theoret. and Math. Phys., 40:2 (1979), 706–715  mathnet  crossref  mathscinet  zmath  isi
    19. G. P. Jorjadze, “Regular solutions of the Liouville equation”, Theoret. and Math. Phys., 41:1 (1979), 867–871  mathnet  crossref  mathscinet  zmath  isi
    20. M. Chaichian, P.P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Physics Letters B, 78:4 (1978), 413  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :142
    References:44
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025