Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 29, Number 2, Pages 205–212 (Mi tmf3450)  

This article is cited in 20 scientific papers (total in 20 papers)

Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain

E. Diana, L. Galgani, M. Casartelli, G. Casati, A. Scotti
References:
Abstract: In this paper we present and discuss the results of various computer experiments performed on a Lennard–Jones chain for a number of particles $N$ ranging from three to one thousand. These experiments indicate that this system exhibits a transition from near integrable to stochastic behavior, as one goes from low specific energies to higher ones. More precisely, it is possible to characterize two values of the energy per particle, $E_{c_1}$ and $E_{c_2}$ , such that, for energies lower than $E_{c_1}$, the overwhelming majority of initial conditions lead to ordered motion and, for energies higher than $E_{c_2}$, the overwhelming majority of initial conditions lead to stochastic motion. The most interesting conclusion of these computations is that the above mentioned critical values seem to be roughly independent of the number of degrees of freedom, if this number is sufficiently large (greater than ten). On the contrary, when $N$ is small (from three to ten), $E_{c_1}$ and $E_{c_2}$ are strongly dependent on both the number of degrees of freedom and the initial conditions.
Received: 30.01.1976
English version:
Theoretical and Mathematical Physics, 1976, Volume 29, Issue 2, Pages 1022–1027
DOI: https://doi.org/10.1007/BF01108505
Language: Russian
Citation: E. Diana, L. Galgani, M. Casartelli, G. Casati, A. Scotti, “Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain”, TMF, 29:2 (1976), 205–212; Theoret. and Math. Phys., 29:2 (1976), 1022–1027
Citation in format AMSBIB
\Bibitem{DiaGalCas76}
\by E.~Diana, L.~Galgani, M.~Casartelli, G.~Casati, A.~Scotti
\paper Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain
\jour TMF
\yr 1976
\vol 29
\issue 2
\pages 205--212
\mathnet{http://mi.mathnet.ru/tmf3450}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 2
\pages 1022--1027
\crossref{https://doi.org/10.1007/BF01108505}
Linking options:
  • https://www.mathnet.ru/eng/tmf3450
  • https://www.mathnet.ru/eng/tmf/v29/i2/p205
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :79
    References:34
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024