Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 29, Number 2, Pages 205–212 (Mi tmf3450)  

This article is cited in 20 scientific papers (total in 20 papers)

Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain

E. Diana, L. Galgani, M. Casartelli, G. Casati, A. Scotti
References:
Abstract: In this paper we present and discuss the results of various computer experiments performed on a Lennard–Jones chain for a number of particles N ranging from three to one thousand. These experiments indicate that this system exhibits a transition from near integrable to stochastic behavior, as one goes from low specific energies to higher ones. More precisely, it is possible to characterize two values of the energy per particle, Ec1 and Ec2 , such that, for energies lower than Ec1, the overwhelming majority of initial conditions lead to ordered motion and, for energies higher than Ec2, the overwhelming majority of initial conditions lead to stochastic motion. The most interesting conclusion of these computations is that the above mentioned critical values seem to be roughly independent of the number of degrees of freedom, if this number is sufficiently large (greater than ten). On the contrary, when N is small (from three to ten), Ec1 and Ec2 are strongly dependent on both the number of degrees of freedom and the initial conditions.
Received: 30.01.1976
English version:
Theoretical and Mathematical Physics, 1976, Volume 29, Issue 2, Pages 1022–1027
DOI: https://doi.org/10.1007/BF01108505
Language: Russian
Citation: E. Diana, L. Galgani, M. Casartelli, G. Casati, A. Scotti, “Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain”, TMF, 29:2 (1976), 205–212; Theoret. and Math. Phys., 29:2 (1976), 1022–1027
Citation in format AMSBIB
\Bibitem{DiaGalCas76}
\by E.~Diana, L.~Galgani, M.~Casartelli, G.~Casati, A.~Scotti
\paper Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain
\jour TMF
\yr 1976
\vol 29
\issue 2
\pages 205--212
\mathnet{http://mi.mathnet.ru/tmf3450}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 2
\pages 1022--1027
\crossref{https://doi.org/10.1007/BF01108505}
Linking options:
  • https://www.mathnet.ru/eng/tmf3450
  • https://www.mathnet.ru/eng/tmf/v29/i2/p205
  • This publication is cited in the following 20 articles:
    1. Roman Frigg, Charlotte Werndl, The Frontiers Collection, Probability in Physics, 2012, 99  crossref
    2. Roman Frigg, Charlotte Werndl, “Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity”, Philos. of Sci., 78:4 (2011), 628  crossref
    3. D.M. Basko, “Weak chaos in the disordered nonlinear Schrödinger chain: Destruction of Anderson localization by Arnold diffusion”, Annals of Physics, 326:7 (2011), 1577  crossref
    4. Peter B. M. Vranas, “Epsilon-Ergodicity and the Success of Equilibrium Statistical Mechanics”, Philos. of Sci., 65:4 (1998), 688  crossref
    5. Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, Seminar on Dynamical Systems, 1994, 3  crossref
    6. LUIGI GALGANI, “Merging of Classical Mechanics into Quantum Mechanics”, Annals of the New York Academy of Sciences, 706:1 (1993), 196  crossref
    7. Luigi Galgani, Antonio Giorgilli, Andrea Martinoli, Stefano Vanzini, “On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates”, Physica D: Nonlinear Phenomena, 59:4 (1992), 334  crossref
    8. Marco Pettini, Marco Landolfi, “Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics”, Phys. Rev. A, 41:2 (1990), 768  crossref
    9. H. Kantz, “Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems”, Physica D: Nonlinear Phenomena, 39:2-3 (1989), 322  crossref
    10. D. Thirumalai, Raymond D. Mountain, “Probes of equipartition in nonlinear Hamiltonian systems”, J Stat Phys, 57:3-4 (1989), 789  crossref
    11. M. L. KOSZYKOWSKI, G. A. PFEFFER, D. W. NOID, “Applications of the Semiclassical Spectral Method to Nuclear, Atomic, Molecular, and Polymeric Dynamicsa”, Annals of the New York Academy of Sciences, 497:1 (1987), 127  crossref
    12. C. Eugene Wayne, “Bounds on the trajectories of a system of weakly coupled rotators”, Commun.Math. Phys., 104:1 (1986), 21  crossref
    13. Roberto Livi, Marco Pettini, Stefano Ruffo, Massimo Sparpaglione, Angelo Vulpiani, “Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model”, Phys. Rev. A, 31:2 (1985), 1039  crossref
    14. Luigi Galgani, Chaos in Astrophysics, 1985, 245  crossref
    15. C. Eugene Wayne, “The KAM theory of systems with short range interactions, I”, Commun.Math. Phys., 96:3 (1984), 311  crossref
    16. Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, “Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion”, Nature, 311:5985 (1984), 444  crossref
    17. Giancarlo Benettin, Alexander Tenenbaum, “Ordered and stochastic behavior in a two-dimensional Lennard-Jones system”, Phys. Rev. A, 28:5 (1983), 3020  crossref
    18. Sun Yi-sui, C. Froeschlé, “The dependence of the kolmogorov entropy of mappings on coordinate systems”, Chinese Astronomy and Astrophysics, 7:2 (1983), 108  crossref
    19. Giancarlo Benettin, Guido Lo Vecchio, Alexander Tenenbaum, “Stochastic transition in two-dimensional Lennard-Jones systems”, Phys. Rev. A, 22:4 (1980), 1709  crossref
    20. O Penrose, “Foundations of statistical mechanics”, Rep. Prog. Phys., 42:12 (1979), 1937  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :88
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025