Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1973, Volume 14, Number 3, Pages 366–380 (Mi tmf3395)  

This article is cited in 17 scientific papers (total in 17 papers)

A complete set of quantum-mechanical observables on a two-dimensional sphere

I. Lukach
References:
Abstract: A study is made of the problem of diagonal operators on a two-dimensional sphere. A trigonometrie form of an elliptic system of coordinates on a sphere that is convenient for applications in physics is derived. Wave eigenfunctions of diagonal operators in the elliptic coordinate system – so-called spheroconieal functions – are constructed. Their main properties are derived. Conditions that determine the eigenvalues of the second diagonal operator in the elliptic coordinate system are found. Some matrix elements of spheroconicM functions are calculated. Possible applications in physics are discussed for the complete set of quantum-mechanical observables associated with the elliptic coordinate system on the twodimensional sphere.
Received: 17.02.1972
English version:
Theoretical and Mathematical Physics, 1973, Volume 14, Issue 3, Pages 271–281
DOI: https://doi.org/10.1007/BF01029309
Language: Russian
Citation: I. Lukach, “A complete set of quantum-mechanical observables on a two-dimensional sphere”, TMF, 14:3 (1973), 366–380; Theoret. and Math. Phys., 14:3 (1973), 271–281
Citation in format AMSBIB
\Bibitem{Luk73}
\by I.~Lukach
\paper A complete set of quantum-mechanical observables on a two-dimensional sphere
\jour TMF
\yr 1973
\vol 14
\issue 3
\pages 366--380
\mathnet{http://mi.mathnet.ru/tmf3395}
\transl
\jour Theoret. and Math. Phys.
\yr 1973
\vol 14
\issue 3
\pages 271--281
\crossref{https://doi.org/10.1007/BF01029309}
Linking options:
  • https://www.mathnet.ru/eng/tmf3395
  • https://www.mathnet.ru/eng/tmf/v14/i3/p366
  • This publication is cited in the following 17 articles:
    1. Alexandre G M Schmidt, Anderson L de Jesus, “Non-relativistic scattering by a shield barrier and by an elliptical aperture”, Phys. Scr., 97:9 (2022), 095001  crossref
    2. Pogosyan G.S., Yakhno A., “Separations of Variables and Analytic Contractions on Two-Dimensional Hyperboloids”, Phys. Part. Nuclei, 50:2 (2019), 87–140  crossref  isi
    3. George S. Pogosyan, Kurt Bernardo Wolf, Alexander Yakhno, “Superintegrable classical Zernike system”, Journal of Mathematical Physics, 58:7 (2017)  crossref
    4. George S. Pogosyan, Cristina Salto-Alegre, Kurt Bernardo Wolf, Alexander Yakhno, “Quantum superintegrable Zernike system”, Journal of Mathematical Physics, 58:7 (2017)  crossref
    5. J. Freimanis, “Polarized radiative transfer equation in some curvilinear coordinate systems”, Journal of Quantitative Spectroscopy and Radiative Transfer, 146 (2014), 250  crossref
    6. Ricardo Méndez-Fragoso, Eugenio Ley-Koo, “Ladder operators for Lamé spheroconal harmonic polynomials”, SIGMA, 8 (2012), 074, 16 pp.  mathnet  crossref  mathscinet
    7. Pogosyan, GS, “Lie-algebra contractions and separation of variables. Three-dimensional sphere”, Physics of Atomic Nuclei, 72:5 (2009), 836  crossref  isi
    8. Pogosyan, G, “Separation of variables and Lie algebra contractions. Applications to special functions”, Physics of Particles and Nuclei, 33 (2002), S123  isi
    9. Grosche, C, “Handbook of Feynman path integrals - Introduction”, Handbook of Feynman Path Integrals, 145 (1998), 1  crossref  isi
    10. C Grosche, Kh H Karayan, G S Pogosyan, A N Sissakian, “Quantum motion on the three-dimensional sphere: the ellipso-cylindrical bases”, J. Phys. A: Math. Gen., 30:5 (1997), 1629  crossref
    11. A A Izmest'ev, G S Pogosyan, A N Sissakian, P Winternitz, “Contractions of Lie algebras and separation of variables”, J. Phys. A: Math. Gen., 29:18 (1996), 5949  crossref
    12. C. Grosche, G. S. Pogosyan, A. N. Sissakian, “Path Integral Discussion for Smorodinsky-Winternitz Potentials: II. The Two- and Three-Dimensional Sphere”, Fortschr. Phys., 43:6 (1995), 523  crossref
    13. I. V. Komarov, “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324  mathnet  crossref  mathscinet  isi
    14. I. Lukach, “Complete sets of observables on the sphere in four-dimensional Euclidean space”, Theoret. and Math. Phys., 31:2 (1977), 457–461  mathnet  crossref  mathscinet
    15. J. Patera, P. Winternitz, “On bases for irreducible representations of O (3) suitable for systems with an arbitrary finite symmetry group”, The Journal of Chemical Physics, 65:7 (1976), 2725  crossref
    16. D. I. Abramov, I. V. Komarov, “Phase-shift method for scattering on potentials that allow separation of variables in spheroidal coordinates”, Theoret. and Math. Phys., 22:2 (1975), 179–183  mathnet  crossref  zmath
    17. I. Lukach, Ya. A. Smorodinskii, “Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces”, Theoret. and Math. Phys., 14:2 (1973), 125–131  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :158
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025