Abstract:
Reducibility of representations (obtained earlier) of conformal superalgebra with
arbitrary Lorentz structure is investigated. It is shown that one gets irreducible subspaces
when some relationships hold for the parameters characterizing given representation.
Global transformations corresponding to the generators of the superalgebra considered
are found.
Citation:
B. L. Aneva, S. G. Mikhov, D. Ts. Stoyanov, “Properties of representations of the conformal superalgebra”, TMF, 31:2 (1977), 177–189; Theoret. and Math. Phys., 31:2 (1977), 394–402
This publication is cited in the following 6 articles:
Walter D. Goldberger, Witold Skiba, Minho Son, “Superembedding methods for 4DN=1SCFTs”, Phys. Rev. D, 86:2 (2012)
HOLGER KNUTH, “ON INVARIANTS AND SCALAR CHIRAL CORRELATION FUNCTIONS IN N=1N=1 SUPERCONFORMAL FIELD THEORIES”, Int. J. Mod. Phys. A, 26:12 (2011), 2007
Supersymmetries and Infinite-Dimensional Algebras, 1989, 599
V. K. Dobrev, V. B. Petkova, Lecture Notes in Physics, 261, Conformal Groups and Related Symmetries Physical Results and Mathematical Background, 1986, 291
V. K. Dobrev, V. B. Petkova, “On the group-theoretical approach to extended conformal supersymmetry: Classification of multiplets”, Lett Math Phys, 9:4 (1985), 287
E. A. Ivanov, A. S. Sorin, “Structure of representations of the conformal supergroup in the OSp(1,4) basis”, Theoret. and Math. Phys., 45:1 (1980), 862–873