Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1978, Volume 35, Number 2, Pages 193–210 (Mi tmf2899)  

This article is cited in 43 scientific papers (total in 43 papers)

Theory of disordered spin systems

L. A. Pastur, A. L. Figotin
References:
Abstract: Disordered, i.e. , containing random parameters, lattice spin systems are considered. It is shown that the free energy in the macroscopic limit becomes nonrandom if the probability distribution of the random parameters satisfies conditions of spatial homogeneity on the average and vanishing of statistical correlations at distant points. The possible orientations of the spins in these systems are discussed in terms of random fields. An asymptotically exactly solvable model of such a system is proposed; it demonstrates different types of orientation, including one corresponding to the spin glass state in which there is no macroscopic magnetization but the magnetic moment of individual regions of the crystal is nonzero.
Received: 04.04.1977
English version:
Theoretical and Mathematical Physics, 1978, Volume 35, Issue 2, Pages 403–414
DOI: https://doi.org/10.1007/BF01039111
Bibliographic databases:
Language: Russian
Citation: L. A. Pastur, A. L. Figotin, “Theory of disordered spin systems”, TMF, 35:2 (1978), 193–210; Theoret. and Math. Phys., 35:2 (1978), 403–414
Citation in format AMSBIB
\Bibitem{PasFig78}
\by L.~A.~Pastur, A.~L.~Figotin
\paper Theory of disordered spin systems
\jour TMF
\yr 1978
\vol 35
\issue 2
\pages 193--210
\mathnet{http://mi.mathnet.ru/tmf2899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=503349}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 35
\issue 2
\pages 403--414
\crossref{https://doi.org/10.1007/BF01039111}
Linking options:
  • https://www.mathnet.ru/eng/tmf2899
  • https://www.mathnet.ru/eng/tmf/v35/i2/p193
  • This publication is cited in the following 43 articles:
    1. Manaka Okuyama, Masayuki Ohzeki, “Replica bound for Ising spin glass models in one dimension”, J. Phys. A: Math. Theor., 58:1 (2025), 015003  crossref
    2. M. Krasnytska, “Ising model with varying spin strength on a scale-free network: scaling functions and critical amplitude ratios”, Condens. Matter Phys., 27:3 (2024), 33603  crossref
    3. Pietro Zanin, Nestor Caticha, “Interacting dreaming neural networks”, J. Stat. Mech., 2023:4 (2023), 043401  crossref
    4. Jorge Littin, Cesar Maldonado, “Loss of Stability in a 1D Spin Model with a Long-Range Random Hamiltonian”, J Stat Phys, 191:1 (2023)  crossref
    5. C. M. Newman, N. Read, D. L. Stein, “Proof of Single-Replica Equivalence in Short-Range Spin Glasses”, Phys. Rev. Lett., 130:7 (2023)  crossref
    6. Kalle Koskinen, “Infinite Volume Gibbs States and Metastates of the Random Field Mean-Field Spherical Model”, J Stat Phys, 190:3 (2023)  crossref
    7. Mariana Krasnytska, Bertrand Berche, Yurij Holovatch, Ralph Kenna, “Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws”, Entropy, 23:9 (2021), 1175  crossref
    8. L. A. Pastur, V. V. Slavin, A. A. Krivchikov, “One-dimensional narrow-band conductors”, Low Temperature Physics, 47:9 (2021), 715  crossref
    9. M Krasnytska, B Berche, Yu Holovatch, R Kenna, “Ising model with variable spin/agent strengths”, J. Phys. Complex., 1:3 (2020), 035008  crossref
    10. C. Itoi, “Self-Averaging of Perturbation Hamiltonian Density in Perturbed Spin Systems”, J Stat Phys, 177:6 (2019), 1063  crossref
    11. Tatyana S. Turova, “The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory”, Brain Research, 1434 (2012), 277  crossref
    12. S. A. Vakulenko, M. V. Cherkai, “Destruction of dissipative structures under random actions”, Theoret. and Math. Phys., 165:1 (2010), 1387–1399  mathnet  crossref  crossref  adsnasa  isi
    13. A. E. Patrick, “Spherical Model in a Random Field”, J Stat Phys, 128:5 (2007), 1211  crossref
    14. T. C. Dorlas, L. A. Pastur, V. A. Zagrebnov, “Condensation in a Disordered Infinite-Range Hopping Bose–Hubbard Model”, J Stat Phys, 124:5 (2006), 1137  crossref
    15. Peter Eichelsbacher, Matthias Löwe, “Moderate Deviations for the overlap parameter in the Hopfield model”, Probab. Theory Relat. Fields, 130:4 (2004), 441  crossref
    16. Anton Bovier, Véronique Gayrard, Mathematical Aspects of Spin Glasses and Neural Networks, 1998, 3  crossref
    17. A.C.D. van Enter, “On the set of pure states for some systems with non-periodic long-range order”, Physica A: Statistical Mechanics and its Applications, 232:3-4 (1996), 600  crossref
    18. A E Patrick, “The distribution of the partition function of the Hopfield model with finite number of patterns”, J. Phys. A: Math. Gen., 29:14 (1996), 3911  crossref
    19. Dimitri Petritis, Nonlinear Phenomena and Complex Systems, 2, Dynamics of Complex Interacting Systems, 1996, 81  crossref
    20. Barbara Gentz, “A central limit theorem for the overlap in the Hopfield model”, Ann. Probab., 24:4 (1996)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:544
    Full-text PDF :192
    References:100
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025