Abstract:
A study is made of the scattering of a charged particle on a charged bound state of two other particles below the ionization threshold (elastic scattering, scattering with excitation and rearrangement). A Fredholm system of integral equations is obtained. Auxiliary screening of the Coulomb potential is not used in the method.
Citation:
A. M. Veselova, “Intergral equations for three particles with Coulomb long-range interaction”, TMF, 35:2 (1978), 180–192; Theoret. and Math. Phys., 35:2 (1978), 395–402
S Oryu, T Watanabe, Y Hiratsuka, A Kodama, Y Togawa, M Takeda, “A new horizon of Few-Body Problems: Exact Coulomb treatment and the energy-momentum translation of the three-body Faddeev equation”, J. Phys.: Conf. Ser., 915 (2017), 012001
Takashi Watanabe, Yasuhisa Hiratsuka, Shinsho Oryu, Yoshio Togawa, “A New Feature of the Screened Coulomb Potential in Momentum Space”, Few-Body Syst, 58:2 (2017)
V. S. Buslaev, Ya. Yu. Koptelov, S. B. Levin, D. A. Strygina, “Numerical construction of the continuous spectrum Eigenfunctions of the three body Schrödinger operator: Three particles on the axis with short-range pair potentials”, Phys. Atom. Nuclei, 76:2 (2013), 208
S Oryu, Y Hiratsuka, S Nishinohara, S Chiba, “Proton–proton phase shifts calculations in momentum space by a rigorous Coulomb treatment”, J. Phys. G: Nucl. Part. Phys., 39:4 (2012), 045101
S. Oryu, S. Nishinohara, N. Shiiki, S. Chiba, “Coulomb phase shift calculation in momentum space”, Phys. Rev. C, 75:2 (2007)
Shinsho Oryu, “Two- and three-charged-particle nuclear scattering in momentum space: A two-potential theory and a boundary condition model”, Phys. Rev. C, 73:5 (2006)
Pupyshev, VV, “Spline-function methods in few-body problem”, Physics of Particles and Nuclei, 35:2 (2004), 145
A. M. Mukhamedzhanov, E. O. Alt, G. V. Avakov, “Momentum space integral equations for three charged particles. II. Diagonal kernels”, Phys. Rev. C, 63:4 (2001)
Yu. A. Kuperin, S. B. Levin, “Extension theory approach to scattering and annihilation in the ¯pd system”, Theoret. and Math. Phys., 118:1 (1999), 60–76
E. O. Alt, A. M. Mukhamedzhanov, “Long-range behavior of the optical potential for the elastic scattering of charged composite particles”, Phys. Rev. A, 51:5 (1995), 3852
E O Alt, A S Kadyrov, A M Mukhamedzhanov, M Rauh, ““Triangle” diagram with off-shell Coulomb T-matrix for (in-)elastic atomic and nuclear three-body processes”, J. Phys. B: At. Mol. Opt. Phys., 28:23 (1995), 5137
Gy. Bencze, P. Doleschall, C. Chandler, A. G. Gibson, D. Walliser, “Three-body problem with charged particles”, Phys. Rev. C, 43:3 (1991), 992
Stefan Knabe, “Generalization of the Faddeev equations to long-range potentials”, Annals of Physics, 181:1 (1988), 54
L. P. Kok, Lecture Notes in Physics, 273, Models and Methods in Few-Body Physics, 1987, 517
E.O. Alt, W. Sandhas, H. Ziegelmann, “Calculation of proton-deuteron phase parameters including the coulomb force”, Nuclear Physics A, 445:3 (1985), 429
D. R. Lehman, A. Eskandarian, B. F. Gibson, L. C. Maximon, “Momentum-space solution of a bound-state nuclear three-body problem with two charged particles”, Phys. Rev. C, 29:4 (1984), 1450
W. Schmidt, O. Bohn, H. Brückmann, E. Filos, D. Gola, C. Heinrich, K. Wick, “Charge dependence of the total nucleon-deuteron reaction cross section”, Nuclear Physics A, 423:1 (1984), 1
J. Dušek, “Two singular integrals containing a partial wave of the two-body coulomb T-matrix”, Czech J Phys, 32:11 (1982), 1195