Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 40, Number 1, Pages 15–27 (Mi tmf2795)  

This article is cited in 50 scientific papers (total in 50 papers)

Solitons in some geometrical field theories

B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov
References:
Abstract: A geometrical approach is developed to two-dimensional field theories, in the framework of which a number of nonlinear models – the theory of gravitation with constant scalar curvature, the massless scalar Born–Infeld field, and also a relativistic string – an be described by a single nonlinear Liouville equation. The soliton solutions of this equation and their stability are investigated. It is shown that such solutions can be interpreted as particles with nonzero rest mass, and this interpretation is valid at both the classical and the quantum level.
Received: 08.06.1978
English version:
Theoretical and Mathematical Physics, 1979, Volume 40, Issue 1, Pages 572–581
DOI: https://doi.org/10.1007/BF01019238
Bibliographic databases:
Language: Russian
Citation: B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Solitons in some geometrical field theories”, TMF, 40:1 (1979), 15–27; Theoret. and Math. Phys., 40:1 (1979), 572–581
Citation in format AMSBIB
\Bibitem{BarNesChe79}
\by B.~M.~Barbashov, V.~V.~Nesterenko, A.~M.~Chervyakov
\paper Solitons in some geometrical field theories
\jour TMF
\yr 1979
\vol 40
\issue 1
\pages 15--27
\mathnet{http://mi.mathnet.ru/tmf2795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=543975}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 40
\issue 1
\pages 572--581
\crossref{https://doi.org/10.1007/BF01019238}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JG40800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf2795
  • https://www.mathnet.ru/eng/tmf/v40/i1/p15
  • This publication is cited in the following 50 articles:
    1. Daniel Grumiller, Jelle Hartong, Stefan Prohazka, Jakob Salzer, “Limits of JT gravity”, J. High Energ. Phys., 2021:2 (2021)  crossref
    2. M. O. Katanaev, “Matematicheskie osnovy obschei teorii otnositelnosti. Chast 2”, Lekts. kursy NOTs, 29, MIAN, M., 2018, 3–365  mathnet  crossref  mathscinet  elib
    3. M. O. Katanaev, “Matematicheskie osnovy obschei teorii otnositelnosti. Chast 1”, Lekts. kursy NOTs, 28, MIAN, M., 2017, 3–311  mathnet  crossref  mathscinet  elib
    4. A. A. Zheltukhin, “Phenomenological Lagrangians, gauge models and branes”, Phys. Part. Nuclei Lett., 14:2 (2017), 312  crossref
    5. Alkalaev K.B., “Global and Local Properties of AdS (2) Higher Spin Gravity”, J. High Energy Phys., 2014, no. 10, 122  crossref  isi
    6. A.A. Zheltukhin, “Toroidal p-branes, anharmonic oscillators and (hyper)elliptic solutions”, Nuclear Physics B, 858:1 (2012), 142  crossref
    7. Benjamin A. Burrington, Peng Gao, “Minimal surfaces in AdS space and integrable systems”, J. High Energ. Phys., 2010:4 (2010)  crossref
    8. D. V. Vassilevich, “Constraints, gauge symmetries, and noncommutative gravity in two dimensions”, Theoret. and Math. Phys., 148:1 (2006), 928–940  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. L Bergamin, D Grumiller, W Kummer, D V Vassilevich, “Physics-to-gauge conversion at black hole horizons”, Class. Quantum Grav., 23:9 (2006), 3075  crossref
    10. D.V. Vassilevich, R. Fresneda, D.M. Gitman, “Stability of a non-commutative Jackiw–Teitelboim gravity”, Eur. Phys. J. C, 47:1 (2006), 235  crossref
    11. Kechkin, OV, “Sigma-models coupled to gravity in string theory”, Physics of Particles and Nuclei, 35:3 (2004), 383  isi
    12. L Bergamin, D Grumiller, W Kummer, “Quantization of 2D dilaton supergravity with matter”, J. High Energy Phys., 2004:05 (2004), 060  crossref
    13. H Balasin, D Grumiller, “The ultrarelativistic limit of 2D dilaton gravity and its energy–momentum tensor”, Class. Quantum Grav., 21:12 (2004), 2859  crossref
    14. D Grumiller, “Long time black hole evaporation with bounded Hawking flux”, J. Cosmol. Astropart. Phys., 2004:05 (2004), 005  crossref
    15. Bergamin, L, “Complete solution of 2D superfield supergravity from graded Poisson-sigma models, and the super point particle”, Physical Review D, 68:10 (2003), 104005  crossref  isi
    16. D. Grumiller, W. Kummer, “The classical solutions of the dimensionally reduced gravitational Chern–Simons theory”, Annals of Physics, 308:1 (2003), 211  crossref
    17. Luzi Bergamin, Wolfgang Kummer, “Graded Poisson-sigma models and dilaton-deformed 2D supergravity algebra”, J. High Energy Phys., 2003:05 (2003), 074  crossref
    18. Pashaev, OK, “Resonance solitons as black holes in Madelung fluid”, Modern Physics Letters A, 17:24 (2002), 1601  crossref  isi
    19. M.O. Katanaev, “Effective Action for Scalar Fields in Two-Dimensional Gravity”, Annals of Physics, 296:1 (2002), 1  crossref
    20. Daniel Grumiller, Dmitri V Vassilevich, “Non-existence of a dilaton gravity action for the exact string black hole”, J. High Energy Phys., 2002:11 (2002), 018  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:607
    Full-text PDF :267
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025