1. B. M. Barbashov, V. V. Nesterenko, “Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string”, Theoret. and Math. Phys., 56:2 (1983), 752–760  mathnet  crossref  mathscinet  zmath  isi
  2. A. A. Zheltukhin, “Gauge description and nonlinear string equations in $d$-dimensional space-time”, Theoret. and Math. Phys., 56:2 (1983), 785–795  mathnet  crossref  mathscinet  zmath  isi
  3. E. D'Hoker, D. Z. Freedman, R. Jackiw, “SO(2,1)-invariant quantization of the Liouville theory”, Phys. Rev. D, 28:10 (1983), 2583  crossref
  4. A. A. Zheltukhin, “Classical relativistic string as a two-dimensional $SO(1,1)\times SO(2)$ gauge model”, Theoret. and Math. Phys., 52:1 (1982), 666–675  mathnet  crossref  mathscinet  isi
  5. E. D'Hoker, R. Jackiw, “Classical and quantal Liouville field theory”, Phys. Rev. D, 26:12 (1982), 3517  crossref
  6. B. M. Barbashov, V. V. Nesterenko, “Relativistic string model in a space-time of a constant curvature”, Commun.Math. Phys., 78:4 (1981), 499  crossref
  7. B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Generalization of the model of a relativistic string in a geometrical approach”, Theoret. and Math. Phys., 45:3 (1980), 1082–1089  mathnet  crossref  mathscinet  zmath  isi
  8. B. M. Barbashov, V. V. Nesterenko, “Differential Geometry and Nonlinear Field Models”, Fortschr. Phys., 28:8-9 (1980), 427  crossref
  9. S.A. Bulgadaev, “Two-dimensional integrable field theories connected with simple lie algebras”, Physics Letters B, 96:1-2 (1980), 151  crossref
  10. G. P. Jorjadze, A. K. Pogrebkov, M. K. Polivanov, “Singular solutions of the equation $\Box\varphi+(m^2/2)\exp\varphi=0$ and dynamics of singularities”, Theoret. and Math. Phys., 40:2 (1979), 706–715  mathnet  crossref  mathscinet  zmath  isi
Previous
1
2
3