Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 39, Number 2, Pages 219–233 (Mi tmf2665)  

This article is cited in 15 scientific papers (total in 15 papers)

Transition operator between multipole states and their tensor structure

S. P. Efimov
References:
Abstract: An operator that determines the reeursion of multipole moments is found. It is shown that the use of multipole moments as functions of the coordinates of a point charge is in some sense preferable to the use of spherical functions to calculate the energy and correlation characteristics of radiation, to study matrix elements of multipole moments, and in the theory of addition of angular momentum. The quantum-mechanical meaning of multipole states and the transition operator defining the creation of an “angularmomentum quantum” is elucidated.
Received: 27.04.1978
English version:
Theoretical and Mathematical Physics, 1979, Volume 39, Issue 2, Pages 425–434
DOI: https://doi.org/10.1007/BF01014921
Bibliographic databases:
Language: Russian
Citation: S. P. Efimov, “Transition operator between multipole states and their tensor structure”, TMF, 39:2 (1979), 219–233; Theoret. and Math. Phys., 39:2 (1979), 425–434
Citation in format AMSBIB
\Bibitem{Efi79}
\by S.~P.~Efimov
\paper Transition operator between multipole states and their tensor structure
\jour TMF
\yr 1979
\vol 39
\issue 2
\pages 219--233
\mathnet{http://mi.mathnet.ru/tmf2665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=537987}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 39
\issue 2
\pages 425--434
\crossref{https://doi.org/10.1007/BF01014921}
Linking options:
  • https://www.mathnet.ru/eng/tmf2665
  • https://www.mathnet.ru/eng/tmf/v39/i2/p219
  • This publication is cited in the following 15 articles:
    1. Alexei M. Frolov, “On matrix elements of the vector physical quantities”, Eur. Phys. J. D, 79:2 (2025)  crossref
    2. Sergey D. Traytak, “The generalized method of separation of variables for diffusion-influenced reactions: Irreducible Cartesian tensor technique”, The Journal of Chemical Physics, 161:7 (2024)  crossref
    3. S. P. Efimov, “Runge–Lenz operator in the momentum space”, JETP Letters, 117:9 (2023), 716–720  mathnet  crossref  crossref
    4. Michael Chigaev, Justin S. Smith, Steven Anaya, Benjamin Nebgen, Matthew Bettencourt, Kipton Barros, Nicholas Lubbers, “Lightweight and effective tensor sensitivity for atomistic neural networks”, The Journal of Chemical Physics, 158:18 (2023)  crossref
    5. S. P. Efimov, “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problem”, Phys. Usp., 65:9 (2022), 952–967  mathnet  crossref  crossref  adsnasa  isi
    6. Nils W. Schween, Brian Reville, “Converting between the Cartesian tensor and spherical harmonic expansion of solutions to the Boltzmann equation”, J. Plasma Phys., 88:5 (2022)  crossref
    7. R. Z. Muratov, “Some useful correspondences in classical magnetostatics and multipole representations of the magnetic potential of an ellipsoid”, Phys. Usp., 55:9 (2012), 919–928  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    8. R. Z. Muratov, “On the Frenkel problem of equivalent steady currents in a sphere”, Tech. Phys., 47:4 (2002), 380  crossref
    9. R. Z. Muratov, “Solution of two mutually-reducible problems in electrostatics”, Tech. Phys., 42:4 (1997), 325  crossref
    10. S. P. Efimov, “Schr�dinger equation in the drift theory of cold plasma”, Radiophys Quantum Electron, 38:11 (1995), 737  crossref
    11. M. Yu. Kalmykov, P. I. Pronin, “One-loop effective action in gauge gravitational theory”, Nuovo Cim B, 106:12 (1991), 1401  crossref
    12. P. I. Pronin, NATO ASI Series, 230, Quantum Mechanics in Curved Space-Time, 1990, 517  crossref
    13. I L Buchbinder, I L Shapiro, “On the renormalisation group equations in curved spacetime with torsion”, Class. Quantum Grav., 7:7 (1990), 1197  crossref
    14. I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, “Renormalization group approach to quantum field theory in curved space-time”, Riv. Nuovo Cim., 12:10 (1989), 1  crossref
    15. I.L. Buchbinder, I.L. Shapiro, “On the renormalization of models of quantum field theory in an external gravitational field with torsion”, Physics Letters B, 151:3-4 (1985), 263  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:628
    Full-text PDF :303
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025