Abstract:
The self-avoiding random walk of a particle in $n$–dimensional Euclidean space is investigated. The renormalization-group equation for the distribution function of the distances between the ends of the trajectory is found. The obtained equation can be used to find the asymptotic behavior of this function.
Citation:
V. I. Alkhimov, “Renormalization group in the problem of a self-avoiding random walk”, TMF, 39:2 (1979), 215–218; Theoret. and Math. Phys., 39:2 (1979), 422–424
\Bibitem{Alk79}
\by V.~I.~Alkhimov
\paper Renormalization group in the problem of a~self-avoiding random walk
\jour TMF
\yr 1979
\vol 39
\issue 2
\pages 215--218
\mathnet{http://mi.mathnet.ru/tmf2664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=537986}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 39
\issue 2
\pages 422--424
\crossref{https://doi.org/10.1007/BF01014920}
Linking options:
https://www.mathnet.ru/eng/tmf2664
https://www.mathnet.ru/eng/tmf/v39/i2/p215
This publication is cited in the following 6 articles:
V. I. Alkhimov, “Evolution in a Gaussian Random Field”, Theoret. and Math. Phys., 139:3 (2004), 878–893
Shirkov, DV, “The Bogoliubov renormalization group and solution symmetry in mathematical physics”, Physics Reports-Review Section of Physics Letters, 352:4–6 (2001), 219
Dmitrij V Shirkov, Vladimir F Kovalev, “The Bogoliubov renormalization group and solution symmetry in mathematical physics”, Physics Reports, 352:4-6 (2001), 219
V.I. Alkhimov, “Self-avoiding random walk in d<4 dimensions”, Physics Letters A, 133:1-2 (1988), 15
V. I. Alkhimov, “Renormalization-group method in the self-avoiding random walk problem”, Theoret. and Math. Phys., 59:3 (1984), 591–597
V. I. Alkhimov, “On the Renormalization Group Method for the Problem of Random Walk without Self‐Intersections”, Annalen der Physik, 496:3 (1984), 228